MINOR SESQUITERPENIC LACTONES OF

Laser trilobum (L.) Borkh. SPECIES*

Zdeňka Smítalová, Miloš Budě̌̌ínský, David Šaman and Miroslav Holub
Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6

Six further sesquiterpenic lactones ($V-X$) and one phenylpropane derivative ($X I$) were isolated from the underground parts of Laser trilobum species. The structure, including the relative and absolute configuration, of five hitherto undescribed lactones has been elucidated and described by formulae $V I-X$.

In our earlier investigations we isolated five sesquiterpenic lactones, laserolide (I), isolaserolide (II), lasolide (III), trilobolide (IV) and isotrilobolide ${ }^{1}$, from the underground parts of Laser trilobum (L.) Borkh. species (Umbelliferae ${ }^{5}$ family, Laserpitieae tribe). Recently, we derived the stereostructure (including absolute configuration) for laserolide $(I)^{2,3}$, isolaserolide $(I I)^{2,3}$, lasolide $(I I I)^{2,4}$ and trilobolide $(I V)^{2,5}$. Compound IV was assigned relative configuration also by German authors ${ }^{6}$ and absolute configuration by Danish investigators ${ }^{7}$. The present communication which represents the full paper on further, minor lactones from the L. trilobum species, appeared earlier in a preliminary form ${ }^{2}$.

Column chromatography on silica gel of light petroleum extract of the above--mentioned species afforded six minor, in this species hitherto undescribed, lactones $V-X$. The phenylpropane derivative $X I$ was obtained from the chloroform extract. One of the lactones, 2β-angeloyloxy- 8α-(2^{\prime}-methyl)butyryloxy- $10 \beta, 11 \alpha$-diacetoxyslov--3-enolide (V), was found already previously in underground parts of L. archangelica Wulf. species ${ }^{8}$ and its structure was derived on the basis of chemical as well as ${ }^{1} \mathrm{H}$ NMR spectral correlation with 8α-angeloyloxy- $10 \beta, 11 \alpha$-diacetoxyslov-3-enolide $(X I I)^{8,9}$. We have found now that the originally published values of melting point $\left(69-71^{\circ} \mathrm{C}\right)$ and optical rotation $\left([\alpha]_{\mathrm{D}}^{20}+35 \cdot 8^{\circ}\right)$ of compound V (archangelolide) ${ }^{8}$ are too low and are actually $109-112^{\circ} \mathrm{C}$ and $-120 \cdot 2^{\circ}$, respectively.

The least polar compound VI had m.p. $105-107^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-138.6^{\circ}$ and composition $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$. According to the IR spectrum, it contained a γ-lactone grouping ($1775 \mathrm{~cm}^{-1}$) and an α, β-unsaturated ester group (1710 and $1645 \mathrm{~cm}^{-1}$). Its mass

[^0]spectrum exhibited molecular peak at $m / z 332$ and characteristic signals at 232 $(\mathrm{M}-100), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right)$and $55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. The CD spectrum showed highest value at $223 \mathrm{~nm}\left(\Delta \varepsilon-29 \cdot 2\right.$; last reading). Comparison of these data and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR parameters with those of laserolide $(I)^{3}$ (Tables I and II) has shown that the compound must have the structure VI (including the absolute configuration) and hence is 8 -deacetoxylaserolide.

Table I

Proton and carbon-13 NMR data of compounds $V I$ and I in deuteriochloroform

Proton	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(J_{\mathrm{H}, \mathrm{H}}\right)$		Carbon	${ }^{13} \mathrm{C}-\mathrm{NMR}$	
	$V I$	I		$V I$	1
H-1	4.93 m	$5 \cdot 11 \mathrm{~m}$	C (1)	125.89	128.48
	$(9 \cdot 9 ; 6 \cdot 2 ; 1 \cdot 7 ; 1 \cdot 5(3 \times)$)		C (2)	$25 \cdot 15$	$25 \cdot 64$
H-2		1	C (3)	$39 \cdot 86$	$39 \cdot 40$
H-2'	1.59-2.22	$1.90-2.40$	C (4)	$140 \cdot 84$	142.99
H-3			C (5)	122.66	$122 \cdot 08$
H. 3^{\prime}			C (6)	$76 \cdot 21$	$73 \cdot 52$
H-5	4.79 dm	4.74 dm	C (7)	$44 \cdot 86$	$46 \cdot 75$
	(10.6: $1.5(3 \times) ; \neq 0$)	(10.3; $1 \cdot 5(3 \times) ; \neq 0)$	C (8)	$27 \cdot 35$	$73 \cdot 49$
H-6	$5 \cdot 43 \mathrm{dd}$	$5 \cdot 38$ dd			
	($10.6 ; 8.9$)	($10 \cdot 3 ; 9.4$)	C (9)	$35 \cdot 81$	$41 \cdot 91$
H-7					
	$(9 \cdot 7 ; 8 \cdot 9 ; 3 \cdot 8)$	$(11 \cdot 3 ; 9 \cdot 4)$	C (10)	$138 \cdot 52$	$133 \cdot 57$
H-8		$\begin{gathered} 5 \cdot 28 \text { ddd } \\ (11 \cdot 3 ; 10 \cdot 8 ; 4 \cdot 0) \end{gathered}$	C (11)	$80 \cdot 80$	$79 \cdot 38$
H-8 ${ }^{\prime}$	1.59-2.22	-	C (12)	$175 \cdot 09$	174.28
H-9		$2 \cdot 86$ bd	$C(13)$	$19 \cdot 70$	19.72
		$(14 \cdot 0 ; \neq 0)$	C (14)	$17 \cdot 12$	17.45
H-9'		$1.84 \mathrm{dd}$			
	,	$(14 \cdot 0 ; 10 \cdot 8)$	C (15)	20.64	20.88
H-13	1.54 s	1.52 s			
H-14	1.41 d	1.40 bd	$\mathrm{C}\left(1^{\prime}\right)^{\text {a }}$	-	169.97
	(1.5)	$(1 \cdot 3 ; \neq 0)$	$\mathrm{C}\left(2^{\prime}\right)^{a}$	-	$21 \cdot 23$
H-15	1.73 d	1.74 d			
	(1.5)	$(1 \cdot 5)$			
b	-	2.07 s	$C\left(1^{\prime}\right)^{b}$	166.43	$166 \cdot 37$
	6.18 qq	6.20 qq	$\mathrm{C}\left(2^{\prime}\right)^{\text {b }}$	$126 \cdot 85$	$126 \cdot 65$
	$(7 \cdot 2(3 \times) ; 1 \cdot 5(3 \times))$	$(7 \cdot 3(3 \times) ; 1 \cdot 5(3 \times))$			
b	1.91 p	(7.93 p	$C\left(3^{\prime}\right)^{\text {b }}$	$140 \cdot 19$	$140 \cdot 67$
	(1.5 (4×))	(1.5 (4×))			
b	2.01 dq	2.04 dq	$C\left(4^{\prime}\right)^{\text {b }}$	$15 \cdot 82$	$15 \cdot 87$
	(7.2; $1 \cdot 5(3 \times)$)	$(7 \cdot 3 ; 1.5(3 \times)$)	$\mathrm{C}\left(5^{\prime}\right)^{\text {b }}$	$20 \cdot 24$	$20 \cdot 23$

[^1]Compound VII, more polar than VI, had m.p. $126-127^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-94 \cdot 6^{\circ}$, and composition $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{8}$. Its IR spectrum showed the presence of a γ-lactone grouping $\left(1784 \mathrm{~cm}^{-1}\right)$, an acetate group ($1732,1250 \mathrm{~cm}^{-1}$) and a double bond ($1649 \mathrm{~cm}^{-1}$). Mass spectrum displayed characteristic peaks at $m / z 390(\mathrm{M}-60), 330(\mathrm{M}-60-60)$, $228(\mathrm{M}-60-60-102), 85\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CO}^{+}\right)$and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}^{+}\right)$. The highest CD value was

III, $R=H$
$X I X, R=T A C$

IV

VII, $R^{1}, R^{3}=A c ; R^{2}=O M b u$
VIII, $R^{1}, R^{2}=H ; R^{3}=$ Ang
XII, $R^{\prime}, R^{3}=A c ; R^{2}=$ OAng
$X I V, R^{1}=T A C ; R^{2}=H ; R^{3}=A n g$
$X V, R^{1}=H ; R^{2}=O A n g ; R^{3}=A C$
XVI, $R^{1}=T A C ; R^{2}=O A n g ; R^{3}=A C$

XIII

Table II

CD spectra and $[\alpha]_{\mathrm{D}}^{20}$ of sesquiterpenic lactones $I, I I I, V-X, X I I$, and $X V$

| Compound | I | $V I$ | $X I I$ | $V I I$ | $X V$ | $V I I I$ | V | $I X$ | $I I I$ | X |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\lambda, \mathrm{~nm}$ | 225 | 223^{a} | 210^{a} | 210^{a} | 210^{a} | 210^{a} | 205^{a} | 210^{a} | 230 | 227 |
| $\Delta \varepsilon$ | $-32 \cdot 8$ | $-29 \cdot 2$ | $-4 \cdot 1$ | $-3 \cdot 1$ | $-3 \cdot 6$ | $-4 \cdot 3$ | $-12 \cdot 1$ | $-11 \cdot 9$ | -2.2 | $-4 \cdot 0$ |
| $[\alpha]_{\mathrm{D}}^{20}$ | $-234 \cdot 0$ | $-138 \cdot 6$ | $-78 \cdot 2$ | $-94 \cdot 6$ | $-25 \cdot 2$ | $-126 \cdot 0$ | $-120 \cdot 2$ | $-66 \cdot 4$ | $-90 \cdot 7$ | $-62 \cdot 3$ |

${ }^{a}$ Last reading.

Table III
Proton and carbon-13 NMR data of compounds $V I I$ and $X I I$ in deuteriochloroform

Proton	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(J_{\mathrm{H}, \mathrm{H}}\right)$		Carbon	${ }^{13} \mathrm{C}-\mathrm{NMR}$	
	$V I I$	XII		$V I I$	XII
H-1	$\begin{gathered} 2.73 \mathrm{~m} \\ (10 \cdot 9 ; 7 \cdot 1 ; 5 \cdot 8 ; 1 \cdot 6) \end{gathered}$	$\begin{gathered} 2.77 \mathrm{~m} \\ (11 \cdot 5 ; 7 \cdot 2 ; 5 \cdot 8 ; 1.4) \end{gathered}$	C (1)	$53 \cdot 72$	$53 \cdot 48$
H-2	$2 \cdot 10-2 \cdot 30$	$\begin{gathered} 2 \cdot 30 \mathrm{~m} \\ (15 \cdot 4 ; 7 \cdot 2 ; 3 \cdot 1 ; 1 \cdot 6(3 \times)) \end{gathered}$	C (2)	31.59	$31 \cdot 30$
H-2 ${ }^{\prime}$		2.16 m	C (3)	125.51	$125 \cdot 46$
		(15.4; 11.5; $2 \cdot 2(3 \times) ; 1 \cdot 6)$	C (4)	$146 \cdot 17$	$145 \cdot 63$
H-3	5.57 m	$5 \cdot 57 \mathrm{~m}$			
	($3 \cdot 0 ; 1.7(3 \times) ; 1.5$)	(3.1; $1.7(3 \times) ; 1.6)$	C (5)	$49 \cdot 04$	$48 \cdot 76$
H-5	$\begin{gathered} 2.56 \mathrm{dd} \\ (11 \cdot 6 ; 5 \cdot 8) \end{gathered}$	$\begin{gathered} 2 \cdot 60 \mathrm{dd} \\ (11 \cdot 6 ; 5 \cdot 8) \end{gathered}$	C (6)	77.55	$77 \cdot 39$
H-6	$4 \cdot 72 \mathrm{dd}$	4.74 dd	C (7)	$47 \cdot 81$	$47 \cdot 47$
	(11.6;9.9)	(11.6;9.9)	C (8)	$64 \cdot 16$	$63 \cdot 87$
H-7	$\begin{gathered} 3 \cdot 62 \mathrm{dd} \\ (11 \cdot 0 ; 9 \cdot 9) \end{gathered}$	$\begin{gathered} 3 \cdot 67 \mathrm{dd} \\ (11 \cdot 1 ; 9 \cdot 9) \end{gathered}$	C (9)	$40 \cdot 79$	$40 \cdot 33$
H-8	5.59 ddd	$5 \cdot 67$ ddd			
	(11.0; $10.1 ; 0.9$)	(11.1; $10 \cdot 1 ; 1 \cdot 1$)	C (10)	$82 \cdot 53$	$82 \cdot 49$
H-9	2.59 ddd	2.67 ddd			
	(15.0; 1.6;0.9)	$(15 \cdot 1 ; 1 \cdot 4 ; 1 \cdot 1)$	C (11)	78.21	77.96
H-9'	1.95 dd	2.01 dd	C (12)	173.85	173.61
	($15 \cdot 0 ; 10 \cdot 1$)	(15.1; $10 \cdot 1$)	C (13)	$20 \cdot 17$	$19 \cdot 91$
H-13	1.53 s	1.59 s	C (14)	24.59	24.36
H-14	1.56 s	1.54 s	C (15)	$18 \cdot 51$	$18 \cdot 21$
H-15'	1.89 m	1.90 m			
	(2.2; 1.7(2×))	$(2.2 ; 1.7 ; 1.6)$	$\mathrm{C}\left(\mathrm{I}^{\prime}\right)^{a}$	$170 \cdot 22$	169.95
a	$2 \cdot 10 \mathrm{~s}$	$2 \cdot 13 \mathrm{~s}$		169.49	$169 \cdot 10$
	2.06 s	2.02 s	$C\left(2^{\prime}\right)^{a}$	$20 \cdot 83$	$20 \cdot 43$
b	2.31 m	-		$22 \cdot 53$	22.29
	$(6 \cdot 4 ; 7 \cdot 8 ; 6 \cdot 9(3 \times))$				

Table III
(Continued)

${ }^{a}$ O-Acetyl; ${ }^{b} \mathrm{O}$-2-methylbutyryl; ${ }^{c} \mathrm{O}$-angeloyl.
observed at $210 \mathrm{~nm}(\Delta \varepsilon-3 \cdot 1)$. These data and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, their comparison with analogous values, particularly for 8α-angeloyloxy-10 $\beta, 11 \alpha$-di-acetoxyslov-3-enolide (XII) (Table II and III), and a direct chemical correlation of compound VII with XII via the identical hydrolysis product (the trihydroxy lactone $X I I I)$ led to the conclusion that the compound is $8 \alpha-\left(2^{\prime}\right.$-methyl $)$ butyryloxy- $10 \beta, 11 \alpha$ --diacetoxyslov-3-enolide whose absolute configuration can be expressed by formula VII.

Further elution gave compound VIII, m.p. $186-189^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-126.0^{\circ}$, composition $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$. Its IR spectrum displayed bands due to a hydroxyl (3610 and $3530 \mathrm{~cm}^{-1}$), a γ-lactone ($1769 \mathrm{~cm}^{-1}$) and an α, β-unsaturated ester (1710 and $1645 \mathrm{~cm}^{-1}$). The mass spectrum contained a molecular peak at $m / z 348$ and characteristic signals at $m / z 330(\mathrm{M}-18), 248(\mathrm{M}-100), 230(\mathrm{M}-18-100), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right)$ and $55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. In the CD spectrum, the highest value of $\Delta \varepsilon-4.3$ was found at 210 nm (last reading). Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR parameters of VIII and its TAC derivative XIV with those of 8α-angeloyloxy-10 β-hydroxy-11-acetoxyslov-3--enolide ($X V$) and its TAC derivative $X V I$ (Tables II and IV) revealed that the studied compound is 10β-hydroxy- 11α-angeloyloxyslov-3-enolide whose absolute configuration is given by formula VIII.
Table IV
Proton and carbon-13 NMR data of compounds VIII, XIV-XVI in deuteriochloroform

Proton	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(J_{\mathrm{H} . \mathrm{H}}\right)$				Carbon	${ }^{13} \mathrm{C}-\mathrm{NMR}$			
	VIII	XIV	XV	XVI		VIII	XIV	XV	XVI
H-1			2.43 m	2.95	C (1)	51.27	$50 \cdot 88$	56.01	53.05
			(11.5; 6.9; $5 \cdot 5 ; 1 \cdot 7$)		C (2)	33.49	33.23	32.23	31.95
H-2	2.31-2.64	$2 \cdot 36-3 \cdot 15$	2.22 m	$2 \cdot 19$	C (3)	125.76	126.04	125.91	$125 \cdot 30$
			(15.1; 6.9; 3 2 ; $1 \cdot 4(3 \times)$)		C (4)	142.28	141.46	147.10	146.57
H-2'			$2.08 \mathrm{~m}$	$2 \cdot 34$	C (5)	49.52	51.32	$49 \cdot 36$	48.86
			($15 \cdot 1 ; 11 \cdot 5 ; 2 \cdot 3(3 \times) ; 1 \cdot 6)$		C (6)	82.79	81.93	78.30	77.37
H-3	$\begin{gathered} 5.49 \mathrm{~m} \\ (1.5(3 \times) ; 1.4(2 \times)) \end{gathered}$	$5 \cdot 54$	5.55 m	$5 \cdot 59$	C (7)	42.37	42.33	47.48	47.59
			($3 \cdot 2 ; 1.7(3 \times) ; 1 \cdot 6)$		C (8)	21.88	21.09	66.94	$64 \cdot 22$
H-5	2.79 m	$2 \cdot 36-3 \cdot 15$	2.58 bdd	2.71	C (9)	$40 \cdot 15$	33.53	$43 \cdot 60$	41.91
			(11.6; 5.5)		C (10)	$73 \cdot 11$	89.20	71.33	86.87
H-6	$5 \cdot 39 \mathrm{dd}$	$5 \cdot 23$	4.72 dd	4.74	C (11)	$76 \cdot 69$	79.39	78.53	78.27
	(11.8;9.3)		(11.6; 9.9)		C (12)	$175 \cdot 67$	175.46	174.14	173.78
H-7	3.23 m	$2 \cdot 36-3 \cdot 15$	3.67 dd	3.67	C (13)	$20 \cdot 38$	20.08	$20 \cdot 19$	20.04
			(11.5; 9.9)		C (14)	$32 \cdot 16$	26.94	$31 \cdot 10$	24.93
H-8			5.54 ddd	$5 \cdot 66$	C (15)	18.35	18.27	18.85	18.64
			(11.5; 9.2; 1.0)		$\mathrm{C}\left(1^{\prime}\right)^{a}$	-	-	$169 \cdot 72$	169.68
H-8'	1.73-2.0	1.80-2.05	-	-	$\mathrm{C}\left(2^{\prime}\right)^{a}$	-	-	$20 \cdot 98$	$20 \cdot 83$
H-9			$2.04 \mathrm{dd}$	2.48	$\mathrm{C}\left(1^{\prime}\right)^{b}$	166.47	$166 \cdot 64$	167.23	166.03
			(14.8; 9.2; $1 \cdot 7$)		$\mathrm{C}\left(2^{\prime}\right)^{b}$	126.93	$126 \cdot 61$	127.09	126.79
H-9'			1.81 dd	2.07	$\mathrm{C}\left(3^{\prime}\right)^{b}$	$140 \cdot 20$	140.66	$140 \cdot 70$	$140 \cdot 40$
			(14.8; 1.0$)$		$\mathrm{C}\left(4^{\prime}\right)^{\text {b }}$	15.98	16.03	15.98	$15 \cdot 82$
H-13	1.49 s	1.48	1.55 s	1.53	$\mathrm{C}\left(5^{\prime}\right)^{\text {b }}$	$20 \cdot 28$	$20 \cdot 31$	$20 \cdot 42$	$20 \cdot 16$

The chromatographic separation afforded further a noncrystalline compound $I X$, $[\alpha]_{D}^{20}-66.4^{\circ}$ of composition $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{9}$. According to the IR spectrum, it contained a hydroxyl (3570 and $3470 \mathrm{~cm}^{-1}$), a γ-lactone ($1784 \mathrm{~cm}^{-1}$), an ester ($1730 \mathrm{~cm}^{-1}$) and a double bond $\left(1652 \mathrm{~cm}^{-1}\right)$. No molecular peak was observed in the mass

$V, \quad R_{1}^{1} R^{3}=A c ; R^{2}=M b u ; R^{4}=A n g$
IX, $R^{\prime}=A c ; R^{2}=M b u ; R^{3}=H ; R^{4}=$ Ang
$X V I I, R^{1}=A c ; R^{2}=M b u ; R^{3}=T A C$
$\mathrm{Ac}=\mathrm{COCH}_{3}$: Ang $=\mathrm{COC}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{3}$;
$\mathrm{Mbu}=\mathrm{COCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{TAC}=\mathrm{CONHCOCCl} 3$
spectrum, which showed characteristic fragments at $m / z 446(\mathrm{M}-60), 428(\mathrm{M}-$ $-60-18), 346(\mathrm{M}-60-100), 244(\mathrm{M}-60-100-102), 85\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CO}^{+}\right), 83\left(\mathrm{C}_{4} \mathrm{H}_{7}\right.$. . $\left.\mathrm{CO}^{+}\right), 57\left(\mathrm{C}_{4} \mathrm{H}_{9}^{+}\right)$and $55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. A CD maximum was found at $210 \mathrm{~nm}(\Delta \varepsilon-11 \cdot 9)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral parameters of the compound and its TAC derivative $X V I I$ are given in Table V. The structure and absolute configuration of $I X$ follows from comparison of its spectral parameters (Table II and V) with those of 2β --angeloyloxy- 8α-(2^{\prime}-methyl)-butyryloxy- $10 \beta, 11 \alpha$-diacetoxyslov-3-enolide (V), as well as from their chemical correlation: compound $I X$ is 2β-angeloyloxy- 8α-(2^{\prime}-methyl)--butyryloxy-10 β-acetoxy-11 α-hydroxyslov- 3 -enolide.

The chromatography gave then a more polar compound X, m.p. $120-121^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}^{20}-62 \cdot 3^{\circ}$, of composition $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$. Its IR spectrum revealed the presence of a hydroxyl (3615 and $3525 \mathrm{~cm}^{-1}$), a γ-lactone ($1780 \mathrm{~cm}^{-1}$), an α, β-unsaturated ester ($1712 \mathrm{~cm}^{-1}$) and a double bond ($1644 \mathrm{~cm}^{-1}$). A molecular peak at $\mathrm{m} / \mathrm{z} 348$ was observed in the mass spectrum, along with ions at $m / z 248(\mathrm{M}-100), 230$ $(\mathrm{M}-100-18), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right)$and $55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. The highest CD value was observed at $227 \mathrm{~nm}(\Delta \varepsilon-4 \cdot 0)$.

These data, together with the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound X and its TAC derivative XVIII, were compared with the analogous parameters of lasolide (III) and its TAC derivative $X I X$ (Table II and VI), showing its structure and absolute configuration to be represented by formula X. For this natural lactone we suggest the name isolasolide.

We isolated also lasolide (III), which had been found in this material already earlier ${ }^{1}$, corrected its originally published melting point from $149-151^{\circ} \mathrm{C}$ to $166-$
$169^{\circ} \mathrm{C}$, determined its rotation $\left([\alpha]_{\mathrm{D}}^{20}-90 \cdot 8\right)$ and measured its CD spectrum which displayed Cotton effect at $230 \mathrm{~nm}(\Delta \varepsilon-2 \cdot 2)$.

The chloroform extract from roots of L. trilobum afforded, in addition to the compounds already found in the light petroleum extract and a considerable amount of trilobolide $(I V)^{1}$, also 1-(3,4-methylenedioxy-5-hydroxyphenyl)propan-1-one (XI), m.p. $160-162^{\circ} \mathrm{C}$, which was identified by its mass and IR spectra and by mixture melting point with an authentic sample ${ }^{10}$.

Scheme 1

As follows from the structures of the sesquiterpenic lactones from the L. trilobum species, all these natural compounds belong to the fundamental sesquiterpenic types germacranolides, guaianolides, eudesmanolides and elemanolides - that contain a γ-lactone ring cis-annelated to the corresponding homocycle and differ in the stereostructure from the analogous types, characteristic of the sesquiterpenic lactones of the Compositae family species. The stereostructure of the described lactones lends support to the assumption that part of their biogenesis proceeds as depicted in Scheme 1 . This scheme is analogous to, but stereostructurally different from, the supposed scheme of biogenesis of typical sesquiterpenic lactones of the Compositae family.

As concerns trilobolide ($I V$), its absolute configuration at the $C(7)-\mathrm{C}(11)$ bond differs from the configuration of most of the so far described sesquiterpenic lactones from both the Compositae and Umbelliferae families. However, many characteristic structural features of trilobolide (e.g. the $1 \beta \mathrm{H}, 6 \alpha \mathrm{H}, 8 \beta \mathrm{H}, 10 \alpha \mathrm{CH}_{3}$ and $10 \beta \mathrm{OCOCH}_{3}$ configuration) prove its close relation with lactones of the slovanolide type. We assume therefore that biogenesis of the lactone part of its molecule could start from a slova-nolide-type precursor as e.g. shown in Scheme 2. The assumed intermediate $X X$ of this biogenesis has its analogy in the structure of 8 -deangeloylshairidin ($X X I$) and
Table V
Proton and carbon-13 NMR data of compounds $I X, X V I I$, and V in deuteriochloroform

Proton	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{J}_{\mathrm{H}, \mathrm{H}}\right)$			Carbon	${ }^{13} \mathrm{C}$-NMR		
	IX	XVII	v		I^{\prime}	XVII	v
H-1	3.29 dd	$3 \cdot 38$	$3 \cdot 32 \mathrm{dd}$	C (1)	52.96	$52 \cdot 36$	52.65
	(7.5; 3.9)		(7.9; 3.5)	C (2)	78.65	78.81	78.76
H-2	5.80 m	$5 \cdot 83$	5.83 m	C (3)	126.97	127•14	126.87
			(3.5; 2.4; 1-4; $1 \cdot 2(3 \times)$)	C (4)	148.77	148.56	148.77
H-3	5.66 m	$5 \cdot 68$	5.66 m	C (5)	49.30	49.87	49.85
			($2 \cdot 4 ; 1.8 ; 1.5(3 \times)$)	C (6)	77.35	76.94	76.68
H-5	3.07 m	3.06	3.05 m	C (7)	53.25	47.99	47.91
			(11.9; $7 \cdot 9 ; 1.8 ; 1 \cdot 4$)	C (8)	64.76	65.03	$65 \cdot 17$
H-6		4.92			43.60	43.77	$43 \cdot 78$
	$(11 \cdot 8 ; 9 \cdot 3)$		$(11 \cdot 9 ; 9 \cdot 7)$	C (10)	$81 \cdot 11$	80.76	$80 \cdot 78$
H-7		$3 \cdot 82$			73.24	80.67	77.95
	$(10 \cdot 5 ; 9 \cdot 3)$		$(11 \cdot 2 ; 9 \cdot 7)$	C (12)	178.58	172.37	173.36
H-8		$5 \cdot 69$			22.42	$20 \cdot 26$	$20 \cdot 17$
	$(11 \cdot 1 ; 10 \cdot 5 ; 2 \cdot 2)$		$(11 \cdot 2 ; 10 \cdot 9 ; 2 \cdot 6)$	$\mathrm{C}(14)$	26.45	26.40	26.02
H-9		$2 \cdot 58$		C (15)	17.44	17.44	17.45
	$(15 \cdot 5 ; 2 \cdot 2)$		$(15 \cdot 2 ; 2 \cdot 6)$	$\mathrm{C}\left(1^{\prime}\right)^{a}$	$170 \cdot 12$	170.01	169.82
H-9'		$2 \cdot 15$					169.45
	$(15 \cdot 5 ; 11 \cdot 1)$		$(15 \cdot 2 ; 10 \cdot 9)$	$\mathrm{C}\left(2^{\prime}\right)^{a}$	22.27	$22 \cdot 18$	$22 \cdot 10$
H-13	1.58 s	1.67	1.58 s				20.69
	1.43 s	1.43	1.43 s		175.20	174.61	174.56
H-15	1.92	1.95	1.95 dd	$\mathrm{C}\left(2^{\prime}\right)^{\text {b }}$	41.80	41.07	41.10
			(1.5; 1.2)	$\mathrm{C}\left(3^{\prime}\right)^{\text {b }}$	26.25	$26 \cdot 21$	$26 \cdot 19$

$$
0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \frac{\text { I }}{}
$$

${ }^{a} \mathrm{O}$-acetyl; ${ }^{b} \mathrm{O}$-2-methylbutyryl; ${ }^{c} \mathrm{O}$-angeloyl.
guillonein (XXII), obtained from Guillonea scabra Cav. Cosson species (Umbelliferae family, Laserpitieae tribe $)^{11-14}$.

Scheme 2

XI, $\quad \mathrm{R}=\mathrm{H}$
$X X I I I_{t} \quad \mathrm{R}=\mathrm{CH}_{3}$

$X X I$

XXII

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected. Column chromatography was carried out on silica gel according to Pitra and Ster ba ($30 \mathrm{~m} \mu$, deactivated with 11% water). Infrared spectra were recorded in chloroform on a Perkin-Elmer 580 spectrometer, NMR spectra
Table VI
Proton and carbon-13 NMR data of compounds $X, X V I I I, I I I$, and $X I X$ in deuteriochloroform

Proton	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(J_{\mathrm{H}, \mathrm{HI}}\right)$				Carbon	${ }^{13} \mathrm{C}-\mathrm{NMR}$			XIX
	X	XVIII	III	XIX		X	XVIII	III	
H-1	3.57 dd	$4 \cdot 89$	3.44 bd	$4 \cdot 78$	C (1)	$74 \cdot 84$	$80 \cdot 20$	$77 \cdot 92$	83.64
	(9.8; 6.4)		($11 \cdot 0 ; \neq 0$)		C (2)	$21 \cdot 29$	28.44	$31 \cdot 18$	27.48
H-2	$2 \cdot 34 \mathrm{~m}$	$2 \cdot 55$			C (3)	121.79	$120 \cdot 54$	$32 \cdot 53$	32.08
	(17.2; 6.4; $1 \cdot 5(5 \times)$)		$1 \cdot 40-2 \cdot 11$	$1.40-2 \cdot 20$	C (4)	133.01	$133 \cdot 31$	$142 \cdot 57$	$141 \cdot 17$
H-2 ${ }^{\prime}$	$1 \cdot 40-2 \cdot 13$	1.39-2.27			C (5)	$47 \cdot 38$	$47 \cdot 21$	$49 \cdot 31$	$49 \cdot 23$
H-3	$5 \cdot 39 \mathrm{~m}$	$5 \cdot 41$	2.40 m	$2 \cdot 47$	C (6)	78.30	$77 \cdot 34$	$75 \cdot 12$	74.38
H-3'	-	-	1.40-2.11	$1 \cdot 40-2 \cdot 20$	C (7)	38.86	38.43	$37 \cdot 60$	37.29
H-5	1-40-2.13	1.39-2.27	1	1	C (8)	18.48	18.07	18.04	17.22
H-6	$4 \cdot 82 \mathrm{dd}$	$4 \cdot 82$	5.03 dd	$5 \cdot 03$	C (9)	32.04	31.04	33.96	$33 \cdot 37$
	(10.9; 9.0)		(11.0; 9.3)		C (10)	37.34	36.53	40.04	$39 \cdot 32$
H-7	3.26 m	$3 \cdot 29$	3.34 m	$3 \cdot 38$	C (11)	79.94	79.53	79.54	$79 \cdot 26$
	($9 \cdot 0 ; 7 \cdot 2 ; 5 \cdot 6$)		(9•3; $4 \cdot 7(2 \times)$)		C (12)	174.70	$174 \cdot 16$	174.92	$174 \cdot 50$
H-8			1		C (13)	$19 \cdot 84$	$19 \cdot 81$	$20 \cdot 65$	$20 \cdot 61$
H-8'	$1 \cdot 40-2 \cdot 13$	1.39-2.27	$1 \cdot 40-2 \cdot 11$	$1 \cdot 40-2 \cdot 20$	C (14)	$11 \cdot 52$	$12 \cdot 42$	$11 \cdot 15$	$11 \cdot 11$
H-9					C (15)	$22 \cdot 41$	$22 \cdot 45$	$110 \cdot 04$	$111 \cdot 15$
H-9'			,		C ($\left.1^{\prime}\right)^{\text {a }}$	$166 \cdot 20$	165.97	$166 \cdot 27$	$166 \cdot 17$
H-13	1.59 s	1.59	1.61 s	1.61	$\mathrm{C}\left(2^{\prime}\right)^{a}$	$126 \cdot 78$	$126 \cdot 68$	$126 \cdot 82$	126.75
H-14	0.84 s	0.99	0.75 s	$0 \cdot 91$	$\mathrm{C}\left(3^{\prime}\right)^{\text {a }}$	$140 \cdot 21$	$140 \cdot 16$	$140 \cdot 33$	140.46
H-15	1.87 m	$1 \cdot 89$	5.05 b	$5 \cdot 11$	$\mathrm{C}\left(4^{\prime}\right)^{\text {a }}$	$15 \cdot 79$	$15 \cdot 69$	$15 \cdot 87$	15.84
	(2.5; 1.3(2×))		4.95 b	$5 \cdot 01$	$\mathrm{C}\left(5^{\prime}\right)^{a}$	$20 \cdot 22$	$20 \cdot 11$	$20 \cdot 25$	$20 \cdot 22$
a	$6 \cdot 17 \mathrm{qq}$	$6 \cdot 17$	$6 \cdot 17 \mathrm{qq}$	$6 \cdot 17$					
	(7.3 (3×); $1 \cdot 5(3 \times)$)		($7 \cdot 3(3 \times) ; 1 \cdot 5(3 \times)$)						
a	$\begin{aligned} & 1.89 \mathrm{p} \\ & (1.5(4 \times)) \end{aligned}$	$1 \cdot 89$	$\begin{aligned} & 1.89 \mathrm{p} \\ & (1.5(4 \times)) \end{aligned}$	1.89					
a	$(1.5(4 \times)$ 2.00 dq	1.99	$(1.5(4 \times)$ 2.00 dq	$2 \cdot 00$					
	$(7 \cdot 3 ; 1 \cdot 5(3 \times)$)		$(7 \cdot 3 ; 1 \cdot 5(3 \times))$						
NH	-	$8 \cdot 38$	-	8.33					

were obtained on a Varian XL-200 instrument (${ }^{1} \mathrm{H}$ at $200 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $50 \cdot 31 \mathrm{MHz}$) in deuteriochloroform with tetramethylsilane as internal standard. The in situ acylations were performed. by adding slight excess of trichloroacetyl isocyanate (TAI) into solution of the compound in the NMR tube. The NMR data are summarized in Tables I, III-VI. The signal multiplicities and coupling constants for derivatives $X I V, X V I-X I X$ are almost the same before and after acylation with TAI and therefore the data for the acyl derivatives are not given in the Tables. Mass spectra were measured on an AEI MS 902 spectrometer, optical rotations were determined in methanol on a Perkin-Elmer 141 objective polarimeter. CD spectra were taken on a Roussel Jouan CD 185 dichrographe in methanol.

Isolation of the Components

A part (100 g) of light petroleum extract from roots and rhizomes of Laser trilobum (L.) Borkh. species ${ }^{1}$ was chromatographed on a column of silica gel (1000 g). The material was eluted first with toluene and then toluene with increasing content of ether. Some of the nine fractions obtained were processed further (Table VII). The chromatographic separation was followed by thin-layer chromatography on silica gel.

8-Deacetoxylaserolide (VI)
Crystallization of fraction 3 (Table VII) afforded compound VI (253 mg), m.p. $105-107^{\circ} \mathrm{C}$ (light petroleum). IR spectrum (cm^{-1}): 1775 (γ-lactone), $1710,1645(\alpha, \beta$-unsaturated ester). Mass spectrum (m / z): $332(\mathrm{M}), 232(\mathrm{M}-100), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right), 55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. For $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}(332 \cdot 4)$ calculated: $72.27 \% \mathrm{C}, 8.49 \% \mathrm{H}$; found: $72.42 \% \mathrm{C}, 8.41 \% \mathrm{H}$.
8α-(2'-Methyl)butyryloxy-10, 11α-diacetoxyslov-3-enolide (VII)
Crystallization of fraction 5 (Table VII) gave compound VII (1.0 g), m.p. $126-127^{\circ} \mathrm{C}$ (light petroleum). IR spectrum $\left(\mathrm{cm}^{-1}\right): 1784$ (γ-lactone), 1732, 1250 (acetate), 1649 (double bond). Mass spectrum (m / z): $390(\mathrm{M}-60), 330(\mathrm{M}-60-60), 228(\mathrm{M}-60-60-102), 85\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CO}^{+}\right)$, $57\left(\mathrm{C}_{4} \mathrm{H}_{9}^{+}\right)$. For $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{8}(450 \cdot 5)$ calculated: $63.99 \% \mathrm{C}, 7.61 \% \mathrm{H}$; found: $64 \cdot 02 \% \mathrm{C}, 7 \cdot 78 \% \mathrm{H}$.

Table VII
Chromatography of light petroleum extract from the underground parts of L. trilobum

Fraction	Solvent	Weight, g	Compounds
1	Toluene	$38 \cdot 2$	-
2	Toluene	$8 \cdot 1$	$X X I I I$
3	Toluene	$3 \cdot 2$	$V I$
4	Toluene $+5 \%$ ether	$5 \cdot 4$	$I I$
5	Toluene $+10 \%$ ether	$10 \cdot 1$	$I, V I I$
6	Toluene $+20 \%$ ether	4.6	$V, V I I I$
7	Toluene $+50 \%$ ether	$4 \cdot 7$	$I X, X$
8	Toluene $+50 \%$ ether	$5 \cdot 0$	$I I I I$
9	Ether	$1 \cdot 5$	-

Trihydroxy Lactone XIII
A solution of compound $V I I(100 \mathrm{mg})$ in methanol $(5 \mathrm{ml})$ was mixed with 33% methanolic potassium hydroxide (15 ml) and the mixture was set aside for 24 h at room temperature with intermittent stirring. Water (20 ml) was added and most of the methanol was removed in vacuo. The aqueous solution was acidified with 5% sulfuric acid, extracted with ether, the combined ethereal extracts were washed with aqueous sodium hydrogen carbonate and water and dried over sodium sulfate. Removal of the solvent afforded the trihydroxy lactone XIII (32 mg), m.p. 192 to $194^{\circ} \mathrm{C}$ (diisopropyl ether), identical with an authentic specimen ${ }^{15}$ (IR, CD, ${ }^{1} \mathrm{H}$ NMR spectra and mixture melting point).
2β-Angeloyloxy-8 α-(2'-methyl)butyryloxy-10 $\beta, 11 \alpha$-diacetoxyslov-3-enolide (V)
Repeated column chromatography of fraction 6 (Table VII) on silica gel afforded $V(56 \mathrm{mg})$, m.p. $109-112^{\circ} \mathrm{C}$ (light petroleum), composition $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{10}$. Its identity with an authentic sample ${ }^{8}$ was proved by comparison of the màss, IR and ${ }^{1} \mathrm{H}$ NMR spectra and by mixture melting point determination.

10ß-Hydroxy-11 α-angeloyloxyslov-3-enolide (VIII)

Repeated chromatography of fraction 6 (Table VII) afforded VIII (30 mg), m.p. $186-189^{\circ} \mathrm{C}$ (light petroleum). IR spectrum (cm^{-1}): 3610,3530 (hydroxyl), 1769 (γ-lactone), 1710,1645 (α, β-unsaturated ester). Mass spectrum (m / z): 348 (M), $330(\mathrm{M}-18$), 248 ($\mathrm{M}-100$), 230 ($\mathrm{M}-18$ $100), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right), 55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. For $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}(348 \cdot 4)$ calculated: $68.95 \% \mathrm{C}, 8 \cdot 10 \% \mathrm{H}$, $0.29 \% \mathrm{H}$ act.; found: $69.09 \% \mathrm{C}, 8.38 \% \mathrm{H}, 0.30 \% \mathrm{H}$ act.

2 β-Angeloyloxy- 8α-(2^{\prime}-methyl)butyryloxy-10 β-acetoxy-11 α-hydroxyslov-3-enolide ($I X$)
Repeated chromatography of fraction 7 (Table VII) on a silica gel column gave noncrystalline compound $I X(1 \cdot 4 \mathrm{~g})$. IR spectrum (cm^{-1}): 3570,3470 (hydroxyl), 1784 (γ-lactone), 1730 (ester), 1652 (double bond). Mass spectrum (m / z): 446 ($\mathrm{M}-60$), 428 ($\mathrm{M}-60-18$), 346 (M-60-

Table VIII
Chromatography of chloroform extract from the underground parts of L. trilobum

Fraction		Weight, g	Compounds
1	Light petroleum $+10 \%$ ether	4.4	-
2	Light petroleum $+20 \%$ ether	1.5	$X X I I I$
3	Light petroleum $+30 \%$ ether	0.9	-
4	Light petroleum $+35 \%$ ether	2.3	$I, I I$
5	Light petroleum $+40 \%$ ether	3.0	$X I$
6	Light petroleum $+50 \%$ ether	2.7	-
7	Ether	4.3	-
8	Ether	$45 \cdot 5$	$I V$
9	Ether $+5 \%$ methanol	18.5	-

100), $244(\mathrm{M}-60-100-102), 85\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CO}^{+}\right), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right), 57\left(\mathrm{C}_{4} \mathrm{H}_{9}^{+}\right), 55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. For $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{9}(506 \cdot 6$) calculated: $64.02 \% \mathrm{C}, 7.56 \% \mathrm{H}, 0.20 \% \mathrm{H}$ act.; found: $63.99 \% \mathrm{C}, 7.55 \% \mathrm{H}$, $0.22 \% \mathrm{H}$ act.

Compound V from lactone IX: A solution of lactone $I X(130 \mathrm{mg})$ in acetic anhydride (10 ml) was heated in a sealed ampoule to $100^{\circ} \mathrm{C}$ for 24 h . The mixture was diluted with water, extracted several times with ether and the combined ethereal extracts were worked up as usual. The crude product (96 mg) was purified by thin-layer chromatography affording the enolide $V(14 \mathrm{mg})$. Its identity with a standard was proved by comparison of $I R, C D$ and ${ }^{1} H$ NMR spectra.

Isolasolide (X)
Repeated chromatography of fraction 7 (Table VII) on a silica gel column gave isolasolide (X; 130 mg), m.p. $120-121^{\circ} \mathrm{C}$ (light petroleum-ethyl acetate). IR spectrum (cm^{-1}): 3615,3525 (hydroxyl), 1780 (γ-lactone), 1712 (α, β-unsaturated ester), 1644 (double bond). Mass spectrum $(\mathrm{m} / \mathrm{z}): 348(\mathrm{M}), 248(\mathrm{M}-100), 230(\mathrm{M}-100-18), 83\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{CO}^{+}\right), 55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}\right)$. For $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$ (348.4) calculated: $68.95 \% \mathrm{C}, 8.10 \% \mathrm{H}, 0.29 \% \mathrm{H}$ act.; found: $68.82 \% \mathrm{C}, 8.08 \% \mathrm{H}, 0.27 \% \mathrm{H}$ act.

Lasolide (III)
Repeated column chromatography of fraction 8 (Table VII) on silica gel afforded lasolide (III; 204 mg), m.p. $166-169^{\circ} \mathrm{C}$ (light petroleum-ethyl acetate). Its identity with an authentic sample of lasolide ${ }^{1}$ was proved by comparison of mass, IR and ${ }^{1} \mathrm{H}$ NMR spectra and by mixture melting point.

1-(3,4-Methylenedioxy-5-hydroxyphenyl)propan-1-one (XI)
Dry ground roots of L. trilobum (8.9 kg) were extracted with light petroleum and then with chloroform. The chloroform extract (142 g) was chromatographed on silica gel (Table VIII). Fraction 5 on crystallization yielded 85 mg of $X I$, m.p. $159-162^{\circ} \mathrm{C}$ (ethyl acetate), composition $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$. According to the mass, IR and ${ }^{1} \mathrm{H}$ NMR spectra and mixture melting point, the compound was identical with an authentic sample ${ }^{10}$.

Elemental analyses were carried out in the Analytical Laboratory of our Institute by Dr V. Pechanec and Mrs A. Fron̆ková under the direction of Dr J. Horáček. Infrared and CD spectra were taken and interpreted by Dr S. Vašičková, mass spectra by Dr L. Dolejs. Optical rotations were measured by Mrs Z. Ledvinová. We thank them all.

REFERENCES

1. Holub M., De Groote R., Herout V., Sorm F.: This Journal 33, 2911 (1968).
2. Holub M., Buděsínský M., Smítalová Z., Šaman D., Rychlewska U.: Tetrahedron Lett. 1984, 3755.
3. Holub M., Buděšínský M., Smítalová Z., Saman D., Rychlewska U.: This Journal 50, 1878 (1985).
4. Holub M., Buděšinský M., Smítalová Z., Šaman D., Rychlewska U.: This Journal 51, 903 (1986).
5. Holub M., BuděŠinský M., Smítalová Z., Rychlewska U.: This Journal, in press.
6. Kutschabsky L., Reck G., Pfeiffer D., Ripperger H.: Z. Chem. 1984, 24.
7. Christensen S. B., Norup E.: Tetrahedron Lett. 1985, 107.
8. Holub M., Samek Z.: This Journal 38, 731 (1973).
9. Holub M., Samek Z., Vašičková S., Masojídková M.: This Journal 43, 2444 (1978).
10. Smítalová Z., Buděšinský M., Saman D., Vašíčková S., Holub M.: This Journal 49, 852 (1984).
11. Pinar M., Rico M., Rodríguez B.: Phytochemistry 21, 735 (1982).
12. Pinar M., Rico M., Rodriguez B.: Phytochemistry 21, 1802 (1982).
13. Pinar M., Rodríguez B., Rico M., Perales A., Fayos J.: Phytochemistry 22, 987 (1983).
14. Fayos J., Perales A., Pinar M., Rico M., Rodriguez B.: Phytochemistry 22, 1983 (1983).
15. Holub M., Motl O., Samek Z., Herout V.: This Journal 37, 1186 (1972).

Translated by M. Tichý.

[^0]: * Part CCXCI in the series On Terpenes; Part CCXC: Acta Entomol. Bohemosl., in press.

[^1]: ${ }^{a} \mathrm{O}$-Acetyl; ${ }^{b} \mathrm{O}$-angeloyl.

