MINOR SESQUITERPENIC LACTONES OF Laser trilobum (L.) BORKH. SPECIES*

Zdeňka Smítalová, Miloš Buděšínský, David Šaman and Miroslav Holub

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague 6

Received August 19th, 1985

Six further sequiterpenic lactones (V-X) and one phenylpropane derivative (XI) were isolated from the underground parts of *Laser trilobum* species. The structure, including the relative and absolute configuration, of five hitherto undescribed lactones has been elucidated and described by formulae VI-X.

In our earlier investigations we isolated five sesquiterpenic lactones, laserolide (I), isolaserolide (II), lasolide (III), trilobolide (IV) and isotrilobolide¹, from the underground parts of Laser trilobum (L.) BORKH. species (Umbelliferae⁵ family, Laserpitieae tribe). Recently, we derived the stereostructure (including absolute configuration) for laserolide $(I)^{2,3}$, isolaserolide $(II)^{2,3}$, lasolide $(III)^{2,4}$ and trilobolide $(IV)^{2,5}$. Compound IV was assigned relative configuration also by German authors⁶ and absolute configuration by Danish investigators⁷. The present communication which represents the full paper on further, minor lactones from the L. trilobum species, appeared earlier in a preliminary form².

Column chromatography on silica gel of light petroleum extract of the abovementioned species afforded six minor, in this species hitherto undescribed, lactones V-X. The phenylpropane derivative XI was obtained from the chloroform extract. One of the lactones, 2β -angeloyloxy- 8α -(2'-methyl)butyryloxy- 10β , 11α -diacetoxyslov--3-enolide (V), was found already previously in underground parts of L. archangelica WULF. species⁸ and its structure was derived on the basis of chemical as well as ¹H NMR spectral correlation with 8α -angeloyloxy- 10β , 11α -diacetoxyslov-3-enolide (XII)^{8,9}. We have found now that the originally published values of melting point ($69-71^{\circ}$ C) and optical rotation ($[\alpha]_{D}^{20} + 35\cdot8^{\circ}$) of compound V (archangelolide)⁸ are too low and are actually $109-112^{\circ}$ C and $-120\cdot2^{\circ}$, respectively.

The least polar compound VI had m.p. $105-107^{\circ}$ C, $[\alpha]_{D}^{20} - 138 \cdot 6^{\circ}$ and composition $C_{20}H_{28}O_4$. According to the IR spectrum, it contained a γ -lactone grouping (1 775 cm⁻¹) and an α,β -unsaturated ester group (1 710 and 1 645 cm⁻¹). Its mass

^{*} Part CCXCI in the series On Terpenes; Part CCXC: Acta Entomol. Bohemosl., in press.

spectrum exhibited molecular peak at m/z 332 and characteristic signals at 232 (M-100), 83 (C₄H₇CO⁺) and 55 (C₄H₇⁺). The CD spectrum showed highest value at 223 nm ($\Delta \varepsilon$ -29·2; last reading). Comparison of these data and the ¹H and ¹³C NMR parameters with those of laserolide (I)³ (Tables I and II) has shown that the compound must have the structure VI (including the absolute configuration) and hence is 8-deacetoxylaserolide.

TABLE I

Proton and carbon-13 NMR data of compounds VI and I in deuteriochloroform

	¹ H-NMR	(<i>J</i> _{H,H})	Carlan	¹³ C-1	NMR
Proton –	VI	I	Carbon	VI	I
H-1	4·93 m	5·11 m	C (1)	125.89	128.48
	(9·9; 6·2; 1·7; 1·5 (3×))		C (2)	25.15	25.64
H-2			C (3)	39.86	39.40
H-2′	1.59-2.22	1.90-2.40	C (4)	140.84	142.99
H-3			C (5)	122.66	122.08
H-3'			C (6)	76-21	73.52
H-5	4.79 dm	4•74 dm	C (7)	44.86	46.75
	$(10.6; 1.5 (3 \times); \pm 0)$	$(10.3; 1.5 (3 \times); \pm 0)$	C (8)	27.35	73.49
H-6	5.43 dd	5•38 dd			
	(10.6; 8.9)	(10.3; 9.4)	C (9)	35.81	41.91
H-7	3.11 ddd	3•72 dd			
	(9.7; 8.9; 3.8)	(11.3; 9.4)	C (10)	138.52	133.57
H-8		5.28 ddd	C (11)	80.80	79 ·38
		(11.3; 10.8; 4.0)			
H-8′	1.59-2.22	_	C (12)	175.09	174-28
H-9	1	2.86 bd	C (13)	19.70	19.72
		$(14.0; \pm 0)$	C (14)	17.12	17.45
H-9′		1.84 dd			
		(14.0; 10.8)	C (15)	20-64	20.88
H-13	1.24 s	1.52 s	. ,		
H-14	1.41 d	1.40 bd	$C(1')^{a}$	_	169.97
	(1.5)	$(1.3; \pm 0)$	$C(2')^{a}$		21.23
H-15	1.73 d	1-74 d			
	(1.5)	(1.5)			
а		2.07 s	$C(1')^{b}$	166.43	166.37
ь	6·18 gg	6·20 gg	$C(2')^{b}$	126.85	126.65
	$(7.2(3\times); 1.5(3\times))$	$(7.3 (3 \times); 1.5 (3 \times))$			
b	1.91 p	1.93 p	$C(3')^{b}$	140.19	140.67
	$(1.5(4\times))$	$(1.5(4\times))$. ,		
ь	2.01 dg	2.04 dq	$C(4')^{b}$	15.82	15.87
	$(7.2; 1.5 (3 \times))$	(7·3; 1·5 (3×))	$C(5')^b$	20.24	20.23
	· · · ·				

^a O-Acetyl; ^b O-angeloyl.

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

1324

Compound VII, more polar than VI, had m.p. $126-127^{\circ}$ C, $[\alpha]_{D}^{20}-94\cdot6^{\circ}$, and composition C₂₄H₃₄O₈. Its IR spectrum showed the presence of a γ -lactone grouping (1 784 cm⁻¹), an acetate group (1 732, 1 250 cm⁻¹) and a double bond (1 649 cm⁻¹). Mass spectrum displayed characteristic peaks at m/z 390 (M-60), 330 (M-60-60), 228 (M-60-60-102), 85 (C₄H₉CO⁺) and 57 (C₄H₉⁺). The highest CD value was

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

XIII

CD spectru		01 3034				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······	·····		
Compound	Ι	VI	XII	VII	XV	VIII	V	IX	III	X
λ, nm	225	223 ^a	210 ^a	210 ^a	210 ^a	210 ^a	205 ^a	210 ^a	230	227
$\Delta \varepsilon$	-32.8	-29.2	-4·1	-3.1	-3.6	-4.3	-12.1	-11.9	-2.2	4.0
$[\alpha]_{\rm D}^{20}$	-234.0	-138.6	- 78 · 2	-94.6	-25.2	-126.0	-120-2	-66.4	-90.7	-62.3

TABLE II

CD spectra and $\left[\alpha\right]_{D}^{20}$ of sesqui	terpenic lactones	I, III.	V-X	, XII, and	XV
---	-------------------	---------	-----	------------	----

^a Last reading.

TABLE III

_

Proton and carbon-13 NMR data of compounds VII and XII in deuteriochloroform

Proton	¹ H-N	$MR (J_{H,H})$	Carbon	¹³ C-1	NMR
1101011 -	VII	XII	Carbon	VII	XII
H-1	2·73 m	2•77 m	C (1)	53.72	53.48
	(10.9; 7.1; 5.8; 1.6)	(11.5; 7.2; 5.8; 1.4)			
H-2	$2 \cdot 10 - 2 \cdot 30$	2·30 m	C (2)	31.59	31.30
		(15·4; 7·2; 3·1; 1·6 (3×))			
H-2′		2·16 m	C (3)	125-51	125.46
		(15·4; 11·5; 2·2 (3×); 1·6)	C (4)	146-17	145.63
H-3	5.57 m	5.57 m			
	(3·0; 1·7 (3×); 1·5)	(3·1; 1·7 (3×); 1·6)	C (5)	49.04	48.76
H-5	2.56 dd	2.60 dd			
	(11.6; 5.8)	(11.6; 5.8)	C (6)	77.55	77.39
H-6	4·72 dd	4·74 dd	C (7)	47.81	47.47
	(11.6; 9.9)	(11.6; 9.9)	C (8)	64.16	63.87
H-7	3.62 dd	3.67 dd			
	(11.0; 9.9)	(11-1; 9-9)	C (9)	40.79	40.33
H-8	5∙59 ddd	5.67 ddd			
	(11.0; 10.1; 0.9)	(11.1; 10.1; 1.1)	C (10)	82.53	82.49
H-9	2·59 ddd	2.67 ddd			
	(15.0; 1.6; 0.9)	(15.1; 1.4; 1.1)	C (11)	78.21	77.96
H-9′	1•95 dd	2.01 dd	C (12)	173.85	173-61
	(15.0; 10.1)	(15.1; 10.1)	C (13)	20.17	19.91
H-13	1.53 s	1.59 s	C (14)	24.59	24.36
H-14	1.56 s	1.54 s	C (15)	18.51	18.21
H-15′	1·89 m	1·90 m			
	(2·2; 1·7 (2×))	(2.2; 1.7; 1.6)	$C(1')^{a}$	170-22	169.95
a	2·10 s	2·13 s		169.49	169.10
	2•06 s	2·02 s	$C(2')^{a}$	20.83	20.43
ь	2·31 m	—		22.53	22.29
	(6·4; 7·8; 6·9 (3×))				

On Terpenes

(Continued)

Destar	¹ H-NM	$AR(J_{H,H})$		¹³ C-1	NMR
Proton -	VII	XII	- Carbon	VII	XII
b	1.71 m	_	C (1') ^b	174.83	_
b	(13·4; 7·8; 7·4 (3×)) 1·45 m	_	C (2') ^b	41.32	_
b	(13·4; 6·4; 7·4 (3×)) 1·15 d	-	C (3') ^b	26-40	
ь	(6·9) 0·94 t	_	$C(4')^{b}$	11.61	_
c	(7·4 (2×)) —	6·09 qq	C (5') ^b	16.39	
c		(7·3 (3×); 1·5 (3×)) 1·86 p	$C (1')^{c} C (2')^{c}$	-	165•76 127∙09
c	_	(1·5 (4×)) 1·99 dq	$C (3')^{c} C (4')^{c}$		138·10 15·31
		(7·3; 1·5 (3×))	$C(5')^c$		19-91

^a O-Acetyl; ^b O-2-methylbutyryl; ^c O-angeloyl.

observed at 210 nm ($\Delta \varepsilon - 3.1$). These data and ¹H and ¹³C NMR spectra, their comparison with analogous values, particularly for 8 α -angeloyloxy-10 β ,11 α -di-acetoxyslov-3-enolide (XII) (Table II and III), and a direct chemical correlation of compound VII with XII via the identical hydrolysis product (the trihydroxy lactone XIII) led to the conclusion that the compound is 8 α -(2'-methyl)butyryloxy-10 β ,11 α -diacetoxyslov-3-enolide whose absolute configuration can be expressed by formula VII.

Further elution gave compound VIII, m.p. 186–189°C, $[\alpha]_D^{20} - 126 \cdot 0^\circ$, composition C₂₀H₂₈O₅. Its IR spectrum displayed bands due to a hydroxyl (3 610 and 3 530 cm⁻¹), a γ-lactone (1 769 cm⁻¹) and an α,β-unsaturated ester (1 710 and 1 645 cm⁻¹). The mass spectrum contained a molecular peak at m/z 348 and characteristic signals at m/z 330 (M-18), 248 (M-100), 230 (M-18-100), 83 (C₄H₇CO⁺) and 55 (C₄H₇⁺). In the CD spectrum, the highest value of $\Delta \varepsilon - 4 \cdot 3$ was found at 210 nm (last reading). Comparison of ¹H and ¹³C NMR parameters of VIII and its TAC derivative XIV with those of 8α-angeloyloxy-10β-hydroxy-11-acetoxyslov-3-enolide (XV) and its TAC derivative XVI (Tables II and IV) revealed that the studied compound is 10β-hydroxy-11α-angeloyloxyslov-3-enolide whose absolute configuration is given by formula VIII.

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

,

TABLE I Proton and	V I carbon-13 NMR di	ata of compoun	ds VIII, XIV-XVI in deuter	riochloroforı	٤				
Droton		NN-H ^I	AR (J _{H.H})				¹³ C-N	MR	
10001	IIIA	XIX	XV	IAX		ШЛ	XIV	XV	IAX
H-1			2·43 m	2.95	C (1)	51.27	50-88	56-01	53-05
			(11.5; 6.9; 5.5; 1.7)		C (2)	33-49	33-23	32.23	31-95
H-2	2.31 - 2.64	c1.5-96-2	2.22 m (15·1; 6·9; 3·2; 1·4 (3×))	2.19	C (4) C (4)	125-76 142-28	126-04 141-46	125-51 147-10	125-30 146-57
H-2′			2•08 m	2.34	C (5)	49-52	51.32	49-36	48-86
		-	$(15 \cdot 1; 11 \cdot 5; 2 \cdot 3 (3 \times); 1 \cdot 6)$		C (6)	82.79	81-93	78.30	77-37
H-3	5·49 m	5.54	5.55 m	5.59	C (1)	42·37	42-33	47-48	47-59
	(1.5 (3×); 1.4 (2×	(($(3\cdot 2; 1\cdot 7 (3 \times); 1\cdot 6)$		C (8)	21-88	21.09	66-94	64.22
H-5	2·79 m	2.36 - 3.15	2·58 bdd	2.71	C (9)	40.15	33-53	43.60	41-91
			(11-6; 5-5)		C (10)	73-11	89-20	71-33	86.87
9-H	5·39 dd	5.23	4·72 dd	4.74	C (11)	76.69	79-39	78-53	78-27
	(11-8; 9-3)		(11-6; 9-9)		C (12)	175-67	175-46	174-14	173-78
H-7	3·23 m	2.36 - 3.15	3·67 dd	3.67	C (13)	20-38	20-08	20-19	20-04
	-		(11.5; 9.9)		C (14)	32.16	26-94	31.10	24-93
H-8			5.54 ddd	5.66	C (15)	18.35	18-27	18-85	18·64
			(11-5; 9-2; 1-0)		C (1,) ^a	ł	ļ	169-72	169-68
H-8′	1.73 - 2.0	$1 \cdot 80 - 2 \cdot 05$	1	-	$C(2')^{a}$	1	ł	20-98	20-83
6-H			2·04 dd	2.48	$C(1)_{p}$	166-47	166-64	167-23	166-03
			(14-8; 9-2; 1-7)		$C(2')^{b}$	126-93	126-61	127-09	126-79
,6-H			1.81 dd	2.07	$C(3')^{b}$	140-20	140-66	140-70	140-40
			(14-8; 1-0)		$C(4')^{b}$	15-98	16-03	15-98	15-82
H-13	1·49 s	1-48	1.55 s	1-53	C (5′) ^b	20-28	20-31	20-42	20.16

1.67 1.91	2-04	6-15	1.86	1-99	8-45
1·23 s 1·89 m	(2·3; 1·7; 1·4) 2·06 s	6·21 qq (7·3 (3×); 1·5 (3×))	1.89 p (1.5 (4×))	2.05 dq (7.3; 1.5 $(3 \times)$)	I
1-65 1-87	ł	6.14	1.84	1.94	8-52
1-19 s 1-86 m	(2·4; 1·6 (2×)) —	6·15 qq (7·2 (3×); 1·5 (3×))	1⋅88 p (1⋅5 (4×))	1-99 dq (7-3; 1-5 (3×))	:

^a O-Acetyl; ^b O-angeloyl.

ΗN

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

H-14 H-15

The chromatographic separation afforded further a noncrystalline compound IX, $[\alpha]_D^{20} - 66.4^\circ$ of composition $C_{27}H_{38}O_9$. According to the IR spectrum, it contained a hydroxyl (3 570 and 3 470 cm⁻¹), a γ -lactone (1 784 cm⁻¹), an ester (1 730 cm⁻¹) and a double bond (1 652 cm⁻¹). No molecular peak was observed in the mass

V, $R^1, R^3 = Ac$; $R^2 = Mbu$; $R^4 = Ang$ IX, $R^1 = Ac$; $R^2 = Mbu$; $R^3 = H$; $R^4 = Ang$ XVII, $R^1 = Ac$; $R^2 = Mbu$; $R^3 = TAC$

Ac = $COCH_3$; Ang = $COC(CH_3)$ = $CHCH_3$; Mbu = $COCH(CH_3)CH_2CH_3$; TAC = $CONHCOCCI_3$

spectrum, which showed characteristic fragments at m/z 446 (M-60), 428 (M--60-18), 346 (M-60-100), 244 (M-60-100-102), 85 (C₄H₉CO⁺), 83 (C₄H₇. .CO⁺), 57 (C₄H₉⁺) and 55 (C₄H₇⁺). A CD maximum was found at 210 nm ($\Delta \varepsilon - 11$ ·9). The ¹H and ¹³C NMR spectral parameters of the compound and its TAC derivative XVII are given in Table V. The structure and absolute configuration of IX follows from comparison of its spectral parameters (Table II and V) with those of 2β--angeloyloxy-8α-(2'-methyl)-butyryloxy-10β,11α-diacetoxyslov-3-enolide (V), as well as from their chemical correlation: compound IX is 2β-angeloyloxy-8α-(2'-methyl)--butyryloxy-10β-acetoxy-11α-hydroxyslov-3-enolide.

The chromatography gave then a more polar compound X, m.p. $120-121^{\circ}$ C, $[\alpha]_{D}^{20} - 62 \cdot 3^{\circ}$, of composition $C_{20}H_{28}O_5$. Its IR spectrum revealed the presence of a hydroxyl (3 615 and 3 525 cm⁻¹), a γ -lactone (1 780 cm⁻¹), an α,β -unsaturated ester (1 712 cm⁻¹) and a double bond (1 644 cm⁻¹). A molecular peak at m/z 348 was observed in the mass spectrum, along with ions at m/z 248 (M-100), 230 (M-100-18), 83 (C₄H₇CO⁺) and 55 (C₄H₇⁺). The highest CD value was observed at 227 nm ($\Delta \epsilon - 4 \cdot 0$).

These data, together with the ¹H and ¹³C NMR spectra of compound X and its TAC derivative XVIII, were compared with the analogous parameters of lasolide (*III*) and its TAC derivative XIX (Table II and VI), showing its structure and absolute configuration to be represented by formula X. For this natural lactone we suggest the name isolasolide.

We isolated also lasolide (III), which had been found in this material already earlier¹, corrected its originally published melting point from $149-151^{\circ}$ C to 166-

169°C, determined its rotation ($[\alpha]_{D}^{20} - 90.8$) and measured its CD spectrum which displayed Cotton effect at 230 nm ($\Delta \varepsilon - 2.2$).

The chloroform extract from roots of *L. trilobum* afforded, in addition to the compounds already found in the light petroleum extract and a considerable amount of trilobolide $(IV)^1$, also 1-(3,4-methylenedioxy-5-hydroxyphenyl)propan-1-one (XI), m.p. 160-162°C, which was identified by its mass and IR spectra and by mixture melting point with an authentic sample¹⁰.

SCHEME 1

As follows from the structures of the sesquiterpenic lactones from the *L. trilobum* species, all these natural compounds belong to the fundamental sesquiterpenic types – germacranolides, guaianolides, eudesmanolides and elemanolides – that contain a γ -lactone ring *cis*-annelated to the corresponding homocycle and differ in the stereo-structure from the analogous types, characteristic of the sesquiterpenic lactones of the *Compositae* family species. The stereostructure of the described lactones lends support to the assumption that part of their biogenesis proceeds as depicted in Scheme 1. This scheme is analogous to, but stereostructurally different from, the supposed scheme of biogenesis of typical sesquiterpenic lactones of the *Compositae* family.

As concerns trilobolide (*IV*), its absolute configuration at the C(7)—C(11) bond differs from the configuration of most of the so far described sesquiterpenic lactones from both the *Compositae* and *Umbelliferae* families. However, many characteristic structural features of trilobolide (*e.g.* the 1 β H, 6 α H, 8 β H, 10 α CH₃ and 10 β OCOCH₃ configuration) prove its close relation with lactones of the slovanolide type. We assume therefore that biogenesis of the lactone part of its molecule could start from a slovanolide-type precursor as *e.g.* shown in Scheme 2. The assumed intermediate *XX* of this biogenesis has its analogy in the structure of 8-deangeloylshairidin (*XXI*) and

AVMIX ($\mathbf{y}_{\mathbf{H},\mathbf{H}$) Carbon IX XVII V XVII V IX XVII V 3:32 dd C(1) 52.96 52.36 52.65 5:83 5:83 m C(2) 78:65 78:81 78.76 5:68 (7-9; 3-5) C (2) 78:65 78:81 78.76 5:68 (7-9; 3-5) C (2) 78:65 78:81 78.76 5:68 (1-9; 1-3; 1-2 (3×)) C (5) 49-30 49:87 148.77 5:68 (1-9; 1-9; 1-2 (3×)) C (3) 126-97 127.14 126.87 3:06 (2-4; 1-8; 1-6) C (3) 126-97 127.14 126.87 3:05 (11-9; 7-9; 1-8; 1-4) C (6) 77-35 49-85 49:87 4:92 (11-9; 7-9; 1-8; 1-4) C (6) 77-35 47-99 47-91 4:92 (11-9; 7-9; 1-8; 1-4) C (6) 77-35 47-99 47-91 4:92 (11-9; 7-9; 1-8; 1-4) C (6) 77-35 47-	ata of co.	7 spunodu	A, A VII, and V in deuteriochlord	oform		130 1130	
XVII V IX XVII V $3\cdot32$ dd C (1) 52.96 52.36 52.65 $5\cdot83$ $3\cdot32$ dd C (1) 52.96 52.36 52.65 $5\cdot83$ $(7\cdot9; 3\cdot5)$ C (2) 78.65 78.81 78.76 $5\cdot83$ $(3\cdot5; 2\cdot4; 1\cdot4; 1\cdot2 (3\times))$ C (3) 126.97 127.14 126.87 $5\cdot66$ $(3\cdot5; 2\cdot4; 1\cdot4; 1\cdot2 (3\times))$ C (3) $49\cdot30$ 49.87 148.77 $3\cdot05$ $(3\cdot5; 2\cdot4; 1\cdot4; 1\cdot2 (3\times))$ C (3) $49\cdot30$ 49.87 148.77 $3\cdot05$ $(2\cdot4; 1\cdot8; 1\cdot5, (3\times))$ C (3) $49\cdot30$ 49.98 47.99 $3\cdot05$ $(2\cdot9, 1\cdot8; 1\cdot4)$ C (3) $76\cdot94$ $76\cdot68$ 47.99 $3\cdot05$ $(11:9; 9\cdot7)$ C (3) $71\cdot35$ $47\cdot99$ $47\cdot91$ $3\cdot05$ $(11:9; 9\cdot7)$ C (3) $77\cdot37$ $13^{7}73$ $13^{7}73$ $5\cdot62$	I.	H-NMR (J	Н,Н)	Carbon		C-NMR	
3:32 dd $3:32$ dd C (1) 52.96 $52:36$ $52:65$ $5\cdot83$ $(7\cdot9; 3\cdot5)$ C (2) $78\cdot65$ $78\cdot81$ $78\cdot76$ $5\cdot83$ $5\cdot58$ $(7\cdot9; 3\cdot5)$ C (3) $126\cdot97$ $127\cdot14$ $126\cdot87$ $5\cdot66$ $5\cdot566$ C (3) $148\cdot77$ $148\cdot56$ $148\cdot77$ $5\cdot66$ $5\cdot66$ C (5) $49\cdot30$ $49\cdot87$ $49\cdot87$ $5\cdot66$ $(2\cdot4; 1\cdot8; 1\cdot5 (3\times))$ C (5) $49\cdot30$ $49\cdot87$ $49\cdot87$ $3\cdot06$ $2\cdot4; 1\cdot8; 1\cdot5 (3\times)$ C (5) $49\cdot30$ $49\cdot76$ $148\cdot77$ $3\cdot06$ $(2\cdot4; 1\cdot8; 1\cdot5 (3\times))$ C (5) $49\cdot30$ $49\cdot30$ $47\cdot99$ $4\cdot791$ $(11\cdot9; 7\cdot9; 1\cdot8; 1\cdot4)$ C (5) $47\cdot90$ $47\cdot91$ $47\cdot91$ $4\cdot92$ $(11\cdot9; 7\cdot9; 1\cdot8; 1\cdot4)$ C (10) $81\cdot11$ $80\cdot76$ $47\cdot91$ $4\cdot92$ $(11\cdot9; 7\cdot9; 1\cdot8; 1\cdot4)$ C (10) $81\cdot11$ $80\cdot76$ $47\cdot91$ $4\cdot92$ $(11\cdot2; 10\cdot9, 2\cdot6)$ C (10) $81\cdot11$ $80\cdot76$ $77\cdot95$ $5\cdot62$ df $5\cdot62$ df C (12) $17\cdot36$ $27\cdot10$ $77\cdot95$ $5\cdot62$ df C (13) $22\cdot42$ $20\cdot76$ $20\cdot17$ $11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $22\cdot42$ $20\cdot76$ $20\cdot17$ $2\cdot15$ $(11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $22\cdot42$ $22\cdot10$ 167 $11\cdot2$ $17\cdot44$ $17\cdot44$ $17\cdot46$ $11\cdot67$ $11\cdot2$ $17\cdot24$ $20\cdot64$ $26\cdot62$ $2\cdot16$ $17\cdot22$ $22\cdot18$ $22\cdot10$ <th></th> <th>ПЛХ</th> <th>K</th> <th></th> <th>XI</th> <th>ПЛХ</th> <th>~</th>		ПЛХ	K		XI	ПЛХ	~
5:83 $(79; 3\cdot5)$ $C(2)$ $78\cdot65$ $78\cdot81$ $78\cdot76$ 5:83 m $5\cdot83$ m $C(3)$ $126\cdot97$ $127\cdot14$ $126\cdot87$ $5\cdot66$ m $5\cdot66$ m $C(3)$ $126\cdot97$ $127\cdot14$ $126\cdot87$ $5\cdot68$ $5\cdot66$ m $C(5)$ $49\cdot30$ $49\cdot87$ $49\cdot85$ $3\cdot06$ $3\cdot5.44$ $1\cdot43$ $1\cdot5$ $(3\cdot7)$ $2-44$ $126\cdot74$ 1.95 $(3\cdot7)$ $C(5)$ $49\cdot30$ $49\cdot87$ $49\cdot85$ $3\cdot06$ $3\cdot05$ m $C(5)$ $77\cdot35$ $76\cdot94$ $76\cdot68$ $3\cdot06$ $3\cdot05$ m $C(7)$ $53\cdot25$ $47\cdot91$ $76\cdot68$ 1.19 $7\cdot92$ $1\cdot8$ $1\cdot4$ $C(7)$ $53\cdot25$ $47\cdot91$ $4\cdot92$ $(11\cdot9; 7\cdot9; 1\cdot8; 1\cdot4)$ $C(7)$ $53\cdot25$ $47\cdot91$ $76\cdot68$ $3\cdot82$ $3\cdot62$ dd $C(10)$ $81\cdot11$ $80\cdot76$ $80\cdot78$ $3\cdot82$ $3\cdot62$ dd $C(11)$ $73\cdot24$ $80\cdot67$ $77\cdot95$ $5\cdot69$ $5\cdot62$ df $C(11)$ $73\cdot24$ $80\cdot67$ $77\cdot95$ $5\cdot69$ $5\cdot62$ df $C(12)$ $17\cdot44$ $17\cdot45$ $11\cdot2;$ $10\cdot9;$ $2\cdot66$ $17\cdot2$ $17\cdot32$ $173\cdot36$ $5\cdot69$ $5\cdot62$ df $C(15)$ $17\cdot44$ $17\cdot45$ $11\cdot2;$ $10\cdot9;$ $2\cdot66$ $17\cdot46$ $17\cdot46$ $11\cdot2;$ $10\cdot9;$ $2\cdot66$ $17\cdot46$ $17\cdot46$ $11\cdot2;$ $10\cdot9;$ $2\cdot66$ $17\cdot46$ $17\cdot46$ $11\cdot2;$ $10\cdot9;$ $2\cdot66$ $17\cdot76$ $22\cdot10$ <		3.38	3-32 dd	C (1)	52-96	52-36	52.65
5:83 $5:83 \text{ m}$ $C(3)$ $126\cdot97$ $127\cdot14$ $126\cdot87$ $5:68$ $5\cdot66 \text{ m}$ $C(5)$ $49\cdot30$ $49\cdot87$ $49\cdot85$ $5:66 \text{ m}$ $C(5)$ $49\cdot30$ $49\cdot87$ $49\cdot85$ $3:06$ $3:05 \text{ m}$ $C(5)$ $49\cdot30$ $49\cdot87$ $49\cdot85$ $3:06$ $3:05 \text{ m}$ $C(7)$ $53\cdot25$ $47\cdot99$ $47\cdot91$ $4+92$ $(11\cdot9; 7\cdot9; 1\cdot8; 1\cdot4)$ $C(7)$ $53\cdot25$ $47\cdot99$ $47\cdot91$ $4+92$ $(11\cdot9; 9\cdot7)$ $C(10)$ $81\cdot11$ $80\cdot76$ $80\cdot78$ $3:82$ $3:62 \text{ dd}$ $C(10)$ $81\cdot11$ $80\cdot76$ $80\cdot78$ $3:82$ $3:62 \text{ dd}$ $C(11)$ $73\cdot24$ $80\cdot67$ $77\cdot95$ $5:69$ $5:69$ $5:64$ $C(12)$ $17\cdot36$ $17\cdot36$ $17\cdot35$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot67$ $77\cdot95$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot76$ $20\cdot17$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot67$ $77\cdot95$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot76$ $20\cdot17$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot76$ $20\cdot17$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot67$ $21\cdot75$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot76$ $20\cdot17$ $5:69$ $5:60 \text{ dd}$ $C(13)$ $22\cdot42$ $20\cdot67$ $20\cdot17$ $2:69$ $1:72\cdot6$ $C(13)$ $1:74\cdot6$			(7-9; 3-5)	C (2)	78-65	78-81	78-76
5-68 $(3\cdot 5, 2\cdot 4; 1\cdot 4; 1\cdot 2 (3\times))$ C (4) $148\cdot77$ $148\cdot56$ $148\cdot77$ $5\cdot66$ m $5\cdot66$ mC (5) $49\cdot30$ $49\cdot87$ $49\cdot85$ $3\cdot06$ m $2\cdot4; 1\cdot8; 1\cdot5 (3\times))$ C (6) $77\cdot35$ $76\cdot94$ $76\cdot68$ $3\cdot05$ mC (7) $53\cdot25$ $47\cdot99$ $47\cdot91$ $4\cdot92$ ddC (7) $53\cdot25$ $47\cdot99$ $47\cdot91$ $4\cdot92$ ddC (10) $81\cdot11$ $80\cdot76$ $80\cdot78$ $3\cdot82$ $3\cdot62$ ddC (10) $81\cdot11$ $80\cdot76$ $80\cdot78$ $5\cdot82$ $3\cdot562$ ddC (11) $73\cdot24$ $80\cdot67$ $77\cdot95$ $5\cdot69$ $5\cdot62$ dfC (12) $178\cdot58$ $172\cdot37$ $177\cdot95$ $5\cdot60$ $5\cdot60$ C (13) $22\cdot42$ $20\cdot76$ $20\cdot17$ $5\cdot60$ ddC (13) $22\cdot42$ $20\cdot60$ $26\cdot02$ $26\cdot02$ $5\cdot60$ ddC (13) $22\cdot42$ $20\cdot60$ $26\cdot02$ $26\cdot17$ $5\cdot60$ ddC (13) $22\cdot42$ $20\cdot60$ $17\cdot45$ $17\cdot45$ $5\cdot50$ dfC (13) $22\cdot42$ $20\cdot60$ $26\cdot02$ $20\cdot17$ $5\cdot60$ ddC (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $26\cdot40$ $5\cdot60$ ddC (13) $22\cdot42$ $20\cdot60$ $17\cdot45$ $17\cdot45$ $5\cdot50$ df $17\cdot26$ C 117° $17\cdot44$ $17\cdot44$ $17\cdot45$ $5\cdot60$ dd $15\cdot76$ $C (13^{\circ})^{\circ}$ $22\cdot10$ $16\cdot46$ $16\cdot46$ $16\cdot7$ $16\cdot7^{\circ}$ $17\cdot44$ $17\cdot44$ $17\cdot45$ $16\cdot7^{\circ}$ $16\cdot5^{\circ}$ <td< td=""><td></td><td>5.83</td><td>5•83 m</td><td>C (3)</td><td>126-97</td><td>127-14</td><td>126-87</td></td<>		5.83	5•83 m	C (3)	126-97	127-14	126-87
5-68 $5\cdot66$ m C (5) $49\cdot30$ $49\cdot87$ $49\cdot87$ $49\cdot87$ $3\cdot06$ $3\cdot05$ m C (7) $53\cdot25$ $47\cdot99$ $47\cdot91$ $3\cdot06$ $3\cdot05$ m C (7) $53\cdot25$ $47\cdot99$ $47\cdot91$ $4\cdot92$ $(11\cdot9; 7\cdot9; 1\cdot8; 1\cdot4)$ C (8) $64\cdot76$ $65\cdot03$ $65\cdot17$ $4\cdot82$ dd C (9) $43\cdot60$ $43\cdot77$ $43\cdot78$ $3\cdot82$ $3\cdot62$ dd C (10) $81\cdot11$ $80\cdot76$ $80\cdot78$ $3\cdot82$ $3\cdot62$ dd C (11) $73\cdot24$ $80\cdot67$ $77\cdot95$ $5\cdot69$ $5\cdot62$ df C (12) $178\cdot58$ $172\cdot37$ $173\cdot36$ $5\cdot62$ df C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $5\cdot8$ $2\cdot66$ dd C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $5\cdot8$ $(11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $5\cdot8$ $2\cdot66$ dd C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $5\cdot8$ $(11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $5\cdot8$ $(11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $2\cdot16$ $(11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $2\cdot16$ $(11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $22\cdot42$ $20\cdot26$ $20\cdot17$ $2\cdot16$ $(11\cdot2; 10\cdot9; 2\cdot6)$ C (13) $17\cdot44$ $17\cdot44$ $17\cdot46$ $16\cdot7$ $17\cdot36$ $17\cdot36$ $17\cdot36$ $17\cdot36$ $16\cdot36$ $2\cdot16$ $17\cdot36$ $17\cdot36$ $17\cdot36$ <td></td> <td></td> <td>$(3.5; 2.4; 1.4; 1.2 (3 \times))$</td> <td>C (4)</td> <td>148-77</td> <td>148-56</td> <td>148•77</td>			$(3.5; 2.4; 1.4; 1.2 (3 \times))$	C (4)	148-77	148-56	148•77
$\begin{array}{llllllllllllllllllllllllllllllllllll$		5.68	5•66 m	C (5)	49-30	49-87	49-85
3.06 $3.05 \mathrm{m}$ C (7) 53.25 47.99 47.91 4.10^{-1} $(11.9; 7.9; 1.8; 1.4)$ C (8) 64.76 65.03 65.17 $4.82 \mathrm{dd}$ C (9) 43.60 43.77 43.78 6.119 7.92 $1.8; 1.4$ C (10) 81.11 80.76 80.78 6.122 $11.62; 9.7$ C (10) 81.11 80.76 77.95 $6.92 \mathrm{cd}$ C (11) 73.24 80.67 77.95 $7.92 \mathrm{cd}$ C (11) 73.24 80.67 77.95 $6.92 \mathrm{cd}$ C (12) 178.58 172.37 173.36 $6.92 \mathrm{cd}$ C (13) 22.42 20.26 20.17 $7.82 \mathrm{cd}$ C (13) 22.42 20.26 20.17 $7.82 \mathrm{cd}$ C (13) 22.42 $20.26 \mathrm{cd}$ 26.02 $6.6 \mathrm{cd}$ C (13) 22.42 $20.26 \mathrm{cd}$ 17.45 $7.12 \mathrm{cd}$ 17.44 17.44 17.44 17.45 $7.13 \mathrm{cd}$ C (15) 17.44 17.44 17.45 $7.15 \mathrm{cd}$ C (15) 17.44 17.44 17.45 $7.15 \mathrm{cd}$ 16.7 17.94 17.45 16.92 $7.15 \mathrm{cd}$ 17.45 17.45 17.45 16.92 $7.16 \mathrm{cd}$ 17.46 17.46 17.45 17.45 $7.17 \mathrm{cd}$ 17.44 17.44 17.44 17.45 $7.17 \mathrm{cd}$ 17.92 21.92 21.92 16.94 $7.17 \mathrm{cd}$ <td></td> <td></td> <td>$(2\cdot4; 1\cdot8; 1\cdot5 (3\times))$</td> <td>C (6)</td> <td>77-35</td> <td>76-94</td> <td>76-68</td>			$(2\cdot4; 1\cdot8; 1\cdot5 (3\times))$	C (6)	77-35	76-94	76-68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ŝ	06	3.05 m	C (1)	53-25	47-99	47-91
92 $4:82 dd$ C (9) $43 \cdot 60$ $43 \cdot 77$ $43 \cdot 73$ 82 $3:62 dd$ C (10) $81 \cdot 11$ $80 \cdot 67$ $77 \cdot 95$ 82 $3:62 dd$ C (11) $73 \cdot 24$ $80 \cdot 67$ $77 \cdot 95$ 69 $5:62 df$ C (12) $178 \cdot 58$ $172 \cdot 37$ $173 \cdot 36$ 69 $5:62 df$ C (13) $22 \cdot 42$ $20 \cdot 26$ $20 \cdot 17$ 58 $2:60 dd$ C (15) 17.44 17.44 17.45 15 $2:60 dd$ C (1 [*]) ^a $170 \cdot 12$ $170 \cdot 01$ $169 \cdot 82$ 15 $2:60 dd$ C (2 [*]) ^a $17.01 \cdot 12$ 17.45 17.45 15 $2:60 dd$ C (1 [*]) ^a $170 \cdot 12$ $170 \cdot 01$ $169 \cdot 45$ 15 $2:66 dd$ C (2 [*]) ^a $2:2.27$ $2:2.18$ $2:60 45$ 67 $1:58 s$ $1.745 6$ $2(1*)b$ $175 \cdot 20$ $169 \cdot 45$ 1558 s $1:53 s$ $2:527 22 \cdot 18$ $2:60 41 \cdot 07$ $2:60 41 \cdot 07$ 67 $1:53 s$ $2:$			(11.9; 7.9; 1.8; 1.4)	C (8)	64-76	65-03	65-17
	4	92	4.82 dd	C (9)	43.60	43-77	43.78
82 $3\cdot 6.2 dd$ C (11) $73\cdot 2.4$ $80\cdot 67$ $77\cdot 95$ 69 $5\cdot 6.2 df$ C (12) $178\cdot 58$ $172\cdot 37$ $173\cdot 36$ 69 $5\cdot 6.2 df$ C (13) $22\cdot 42$ $20\cdot 17$ $173\cdot 36$ 78 $(11\cdot 2; 10\cdot 9; 2\cdot 6)$ C (14) $26\cdot 45$ $20\cdot 40$ $26\cdot 02$ 58 $2\cdot 60 dd$ C (15) $17\cdot 44$ $17\cdot 44$ $17\cdot 45$ 58 $(15\cdot 2; 2\cdot 6)$ C (1') ^a $170\cdot 12$ $170\cdot 01$ $169\cdot 82$ 515 $2\cdot 60 dd$ C (2') ^a $22\cdot 27$ $22\cdot 18$ $16\cdot 45$ 67 $15\cdot 2; 10\cdot 9)$ C (2') ^a $22\cdot 27$ $22\cdot 18$ $22\cdot 10$ 67 $15\cdot 8$ $17\cdot 6$ $17\cdot 6$ $17\cdot 6$ $16\cdot 45$ 67 $15\cdot 8$ $10\cdot 9$ C (2') ^b $41\cdot 80$ $41\cdot 07$ $41\cdot 10$ 67 $1\cdot 5 \cdot 12$ $C (2')b$ $41\cdot 80$ $41\cdot 07$ $41\cdot 10$ 67 $1\cdot 5 \cdot 12$ $C (2')b$ $26\cdot 25$ $26\cdot 21$ $26\cdot 19$			(11-9; 9-7)	C (10)	81.11	80-76	80·78
(11-2; 9.7) C (12) 178-58 172-37 173-36 (6) 5-62 df C (13) 22-42 20-26 20-17 58 (11-2; 10-9; 2:6) C (14) 26-45 26-40 26-02 58 (15:2; 10-9; 2:6) C (15) 17-44 17-44 17-45 58 (15-2; 10-9) C (15) 17-44 17-45 16-82 515 22-66 dd C (15) 17-44 17-45 16-82 515 22-61 C (15) 17-61 16-82 16-95 67 15-2; 10-9) C (2') ^a 22-27 22-18 22-10 67 1-58 s C (1') ^b 175-20 174-61 16-45 67 1-53 s C (1') ^b 175-20 174-61 174-56 67 1-53 s C (1') ^b 175-20 174-61 174-56 68 1-55 dd C (2') ^b 41-80 41-07 41-10 71-55 dd C (3') ^b 26-25 26-21 26-19 26-19	ė	-82	3·62 dd	C (11)	73-24	80-67	77-95
69 $5 \cdot 62 \text{ df}$ C (13) $22 \cdot 42$ $20 \cdot 26$ $20 \cdot 17$ 58 $2 \cdot 60 \text{ dd}$ C (14) $26 \cdot 45$ $26 \cdot 40$ $26 \cdot 02$ 58 $2 \cdot 60 \text{ dd}$ C (15) $17 \cdot 44$ $17 \cdot 44$ $17 \cdot 45$ 15 $2 \cdot 60 \text{ dd}$ C (1 ³) ^a $170 \cdot 12$ $170 \cdot 01$ $169 \cdot 82$ 15 $2 \cdot 06 \text{ dd}$ C (1 ³) ^a $170 \cdot 12$ $170 \cdot 01$ $169 \cdot 45$ 16 $17 \cdot 42$ $17 \cdot 44$ $17 \cdot 44$ $17 \cdot 45$ 16 $17 \cdot 61$ $170 \cdot 12$ $170 \cdot 01$ $169 \cdot 45$ 67 $15 \cdot 2; 10 \cdot 9)$ C (2 ³) ^a $22 \cdot 27$ $22 \cdot 18$ $22 \cdot 10$ 67 $15 \cdot 3s$ C (2 ³) ^b $175 \cdot 20$ $174 \cdot 61$ $174 \cdot 56$ 95 $1 \cdot 95 \text{ dd}$ C (2 ³) ^b $26 \cdot 25$ $26 \cdot 21$ $26 \cdot 19$			(11-2; 9-7)	C (12)	178-58	172-37	173-36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŵ	69	5.62 df	C (13)	22-42	20-26	20-17
58 2-60 dd C (15) 17-44 17-44 17-45 15 2-06 dd C (1') ^a 170-12 170-01 169-82 15 2-06 dd C (2') ^a 170-12 170-01 169-45 67 15-2; 10-9) C (2') ^a 22:27 22:18 22:10 67 1-58 s C (1') ^b 175-20 174-61 17456 43 1-43 s C (1') ^b 175-20 174-61 17456 95 1-95 dd C (2') ^b 41:80 41:07 41:10 155; 12) C (3') ^b 26:25 26:21 26:19	•		(11.2; 10.9; 2.6)	C (14)	26-45	26-40	26-02
(15-2; 2·6) C $(1')^a$ 170-12 170-01 169-82 15 2·06 dd C $(2')^a$ 170-12 170-01 169-45 67 1·58 s C $(2')^a$ 22:27 22:18 22:10 67 1·58 s C $(1')^b$ 175-20 174-61 174:56 43 1·43 s C $(1')^b$ 41:80 41:07 41:10 95 1·95 dd C $(3')^b$ 26:25 26:21 26:19	Ŕ	-58	2-60 dd	C (15)	17-44	17-44	17-45
15 $2.06 dd$ 169.45 (15-2; 10-9) $C(2')^a$ 22.27 22.18 22.10 67 $1.58 \mathrm{s}$ $2(1')^b$ 175.20 174.61 174.56 43 $1.95 \mathrm{dd}$ $C(2')^b$ 41.80 41.07 41.10 95 $(1.5; 1.2)$ $C(3')^b$ 26.25 26.21 26.19			(15.2; 2.6)	$C(1')^{a}$	170-12	170-01	169-82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ю	15	2·06 dd				169-45
$\cdot 67$ $1 \cdot 58 \text{ s}$ $20 \cdot 69$ $\cdot 43$ $1 \cdot 43 \text{ s}$ $C (1')^b$ $175 \cdot 20$ $174 \cdot 61$ $174 \cdot 56$ $\cdot 95$ $1 \cdot 95 \text{ dd}$ $C (2')^b$ $41 \cdot 80$ $41 \cdot 07$ $41 \cdot 10$ $(1 \cdot 5; 1 \cdot 2)$ $C (3')^b$ $26 \cdot 25$ $26 \cdot 21$ $26 \cdot 19$	~		(15-2; 10-9)	C (2′) ^a	22-27	22-18	22·10
$\cdot 43$ $1 \cdot 43$ s $C (1')^b$ $175 \cdot 20$ $174 \cdot 61$ $174 \cdot 56$ $\cdot 95$ $1 \cdot 95$ dd $C (2')^b$ $41 \cdot 80$ $41 \cdot 07$ $41 \cdot 10$ $(1 \cdot 5; 1 \cdot 2)$ $C (3')^b$ $26 \cdot 25$ $26 \cdot 21$ $26 \cdot 19$		1.67	1.58 s				20-69
1.951.95 ddC $(2')^b$ 41.8041.0741.10 $(1\cdot5; 1\cdot2)$ C $(3')^b$ $26\cdot25$ $26\cdot21$ $26\cdot19$		1-43	1·43 s	$C(1')^{b}$	175-20	174·61	174-56
(1.5; 1.2) C $(3')^b$ 26.25 26.21 26.19		1-95	1.95 dd	$C(2')^{b}$	41.80	41-07	41.10
			(1.5; 1.2)	C (3′) ⁰	26-25	26-21	26.19

TABLE V

		1	\$ 00.7	(と)	07 11	cc.11	++
			2·02 s	C (5′) ^b	16-25.	16-15	16-15
q	2·36 m	2.33	2·33 m	C (1') ^c	167-42	167-21	167-15
	((2×))		$(7.6; 6.9 (3 \times); 6.4)$	$C(2')^{c}$	127-62	127-63	127-57
q	1-73 m	1.69	1.72 m	C (3′) ^c	137-96	137-71	137-56
			$(13.6; 7.4 (3 \times); 6.4)$	C (4′) ^c	15-65	15-60	15-48
q	1·45 m	1.43	1·46 m	C (5′) ^c	20-43	20-39	20-29
			$(13.6; 7.6; 7.4 (3 \times))$				
q	1-18 d	l·12	1·15 d				
	(1-0)		(6.9)				
q	0-91 t	0-91	0-93 t				
	$(7.4 (2 \times))$		$(7.4 (2 \times))$				
J	6-05 qq	6.04	6-05 qq				
	$(7\cdot 2 (3\times); 1\cdot 5 (3\times))$		$(7.2 (3 \times); 1.5 (3 \times))$				
v	1-86 p	1.86	1·87 p				
	(1·5 (4×))		(1·5 (4×))				
U	1-95 dq	1-95	1-95 dq				
	(7·2; 1·5 (3×))		$(7.2; 1.5 (3 \times))$				
HN	1	8-67	ł				

guillonein (XXII), obtained from Guillonea scabra CAV. Cosson species (Umbelliferae family, Laserpitieae tribe)¹¹⁻¹⁴.

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected. Column chromatography was carried out on silica gel according to Pitra and Štěrba (30 m μ , deactivated with 11% water). Infrared spectra were recorded in chloroform on a Perkin-Elmer 580 spectrometer, NMR spectra

Proton ar	nd carbon-13 NMR data	of compound	<i>X, XVIII, III</i> , and <i>XI</i>	X in deuterioch	loroform				
Droton		¹ H-NM	R (J _{H,H})		Carbon		¹³ C-N	MR	
	X	IIIAX	III	XIX		X	ШЛХ	III	XIX
H-1	3.57 dd	4.89	3·44 bd	4.78	C (1)	74-84	80-20	77-92	83-64
	(9-8; 6-4)		$(11.0; \pm 0)$	-	C (2)	21-29	28-44	31.18	27-48
H-2	2·34 m	2.55			C (3)	121-79	120-54	32.53	32-08
	(17·2; 6·4; 1·5 (5×))		1.40 - 2.11	$1 \cdot 40 - 2 \cdot 20$	C (4)	133-01	133-31	142.57	141.17
H-2′	1.40 - 2.13	1.39 - 2.27			C (5)	47-38	47·21	49-31	49-23
H-3	5·39 m	5-41	2·40 m	2.47	C (6)	78.30	77-34	75.12	74-38
H-3′	Ι	I	1.40 - 2.11	1.40 - 2.20	C (7)	38-86	38-43	37-60	37-29
H-5	1.40 - 2.13	1.39 - 2.27			C (8)	18-48	18-07	18-04	17-22
9-H	4·82 dd	4.82	5-03 dd	5-03	C (9)	32.04	31-04	33-96	33-37
	(10-9; 9-0)		(11.0; 9.3)		C (10)	37-34	36.53	40-04	39-32
H-7	3·26 m	3·29	3·34 m	3.38	C (11)	79-94	79-53	79-54	79-26
	(9.0; 7.2; 5.6)		(9·3; 4·7 (2×))		C (12)	174.70	174-16	174-92	174.50
H-8					C (13)	19-84	19-81	20-65	20-61
H-8′	$1 \cdot 40 - 2 \cdot 13$	1.39 - 2.27	$1 \cdot 40 - 2 \cdot 11$	$1 \cdot 40 - 2 \cdot 20$	C (14)	11-52	12-42	11.15	11.11
6-H					C (15)	22-41	22-45	110-04	111.15
,6-H					C (1') ^a	166.20	165-97	166-27	166.17
H-13	1·59 s	1.59	1·61 s	1.61	C (2′) ^a	126-78	126.68	126-82	126.75
H-14	0·84 s	66-0	0-75 s	0-91	C (3') ^a	140-21	140-16	140-33	140-46
H-15	1·87 m	1.89	5.05 b	5.11	C (4′) ^a	15.79	15.69	15-87	15-84
	$(2.5; 1.3 (2 \times))$		4-95 b	5.01	C (5′) ^a	20.22	20-11	20.25	20-22
a	6·17 qq	6.17	6·17 qq	6.17					
	$(7\cdot 3 (3 \times); 1\cdot 5 (3 \times))$		$(7\cdot 3 (3\times); 1\cdot 5 (3\times))$						
U	1·89 p	1.89	1·89 p	1.89					
	(1·5 (4×))		(1·5 (4×))						
a	2·00 dq	1-99	2·00 dq	2-00					
	$(7\cdot 3; 1\cdot 5 (3 \times))$		$(7\cdot 3; 1\cdot 5 (3 \times))$						
HN	ł	8-38	I	8.33					
^a O-Angel	loyl.								

TABLE VI

On Terpenes

were obtained on a Varian XL-200 instrument (¹H at 200 MHz, ¹³C at 50·31 MHz) in deuteriochloroform with tetramethylsilane as internal standard. The *in situ* acylations were performed by adding slight excess of trichloroacetyl isocyanate (TAI) into solution of the compound in the NMR tube. The NMR data are summarized in Tables I, III-VI. The signal multiplicities and coupling constants for derivatives XIV, XVI-XIX are almost the same before and after acylation with TAI and therefore the data for the acyl derivatives are not given in the Tables. Mass spectra were measured on an AEI MS 902 spectrometer, optical rotations were determined in methanol on a Perkin-Elmer 141 objective polarimeter. CD spectra were taken on a Roussel Jouan CD 185 dichrographe in methanol.

Isolation of the Components

A part (100 g) of light petroleum extract from roots and rhizomes of *Laser trilobum* (L.) BORKH. species¹ was chromatographed on a column of silica gel (1 000 g). The material was eluted first with toluene and then toluene with increasing content of ether. Some of the nine fractions obtained were processed further (Table VII). The chromatographic separation was followed by thin-layer chromatography on silica gel.

8-Deacetoxylaserolide (VI)

Crystallization of fraction 3 (Table VII) afforded compound VI (253 mg), m.p. $105-107^{\circ}$ C (light petroleum). IR spectrum (cm⁻¹): 1 775 (γ -lactone), 1 710, 1 645 (α , β -unsaturated ester). Mass spectrum (*m*/*z*): 332 (M), 232 (M-100), 83 (C₄H₇CO⁺), 55 (C₄H₇⁺). For C₂₀H₂₈O₄ (332·4) calculated: 72·27% C, 8·49% H; found: 72·42% C, 8·41% H.

 8α -(2'-Methyl)butyryloxy-10 β ,11 α -diacetoxyslov-3-enolide (VII)

Crystallization of fraction 5 (Table VII) gave compound VII (1.0 g), m.p. $126-127^{\circ}$ C (light petroleum). IR spectrum (cm⁻¹): 1 784 (γ -lactone), 1 732, 1 250 (acetate), 1 649 (double bond). Mass spectrum (m/z): 390 (M-60), 330 (M-60-60), 228 (M-60-60-102), 85 (C₄H₉CO⁺), 57 (C₄H₉⁺). For C₂₄H₃₄O₈ (450.5) calculated: 63.99% C, 7.61% H; found: 64.02% C, 7.78% H.

Fraction	Solvent	Weight, g	Compounds
1	Toluene	38-2	
2	Toluene	8-1	XXIII
3	Toluene	3.2	VI
4	Toluene $+$ 5% ether	5-4	II
5	Toluene + 10% ether	10-1	I, VII
6	Toluene $+$ 20% ether	4.6	V, VIII
7	Toluene $+$ 50% ether	4.7	IX, X
8	Toluene $+$ 50% ether	5.0	III
9	Ether	1.5	_

TABLE VII

Chromatography of light petroleum extract from the underground parts of L. trilobum

Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]

1336

Trihydroxy Lactone XIII

A solution of compound VII (100 mg) in methanol (5 ml) was mixed with 33% methanolic potassium hydroxide (15 ml) and the mixture was set aside for 24 h at room temperature with intermittent stirring. Water (20 ml) was added and most of the methanol was removed *in vacuo*. The aqueous solution was acidified with 5% sulfuric acid, extracted with ether, the combined ethereal extracts were washed with aqueous sodium hydrogen carbonate and water and dried over sodium sulfate. Removal of the solvent afforded the trihydroxy lactone XIII (32 mg), m.p. 192 to 194°C (diisopropyl ether), identical with an authentic specimen¹⁵ (IR, CD, ¹H NMR spectra and mixture melting point).

 2β -Angeloyloxy- 8α -(2'-methyl)butyryloxy- 10β , 11α -diacetoxyslov-3-enolide (V)

Repeated column chromatography of fraction 6 (Table VII) on silica gel afforded V (56 mg), m.p. 109-112°C (light petroleum), composition $C_{29}H_{40}O_{10}$. Its identity with an authentic sample⁸ was proved by comparison of the mass, IR and ¹H NMR spectra and by mixture melting point determination.

10β-Hydroxy-11α-angeloyloxyslov-3-enolide (VIII)

Repeated chromatography of fraction 6 (Table VII) afforded *VIII* (30 mg), m.p. 186–189°C (light petroleum). IR spectrum (cm⁻¹): 3 610, 3 530 (hydroxyl), 1 769 (γ-lactone), 1 710, 1 645 (α,β-unsaturated ester). Mass spectrum (m/z): 348 (M), 330 (M–18), 248 (M–100), 230 (M–18–100), 83 (C₄H₇CO⁺), 55 (C₄H₇⁺). For C₂₀H₂₈O₅ (348·4) calculated: 68·95% C, 8·10% H, 0·29% H act.; found: 69·09% C, 8·38% H, 0·30% H act.

 2β -Angeloyloxy- 8α -(2'-methyl)butyryloxy- 10β -acetoxy- 11α -hydroxyslov-3-enolide (IX)

Repeated chromatography of fraction 7 (Table VII) on a silica gel column gave noncrystalline compound *IX* (1·4 g). IR spectrum (cm⁻¹): 3 570, 3 470 (hydroxyl), 1 784 (γ -lactone), 1 730 (ester), 1 652 (double bond). Mass spectrum (*m*/*z*): 446 (M-60), 428 (M-60-18), 346 (M-60-

Fraction		Weight, g	Compound
1	Light petroleum $+$ 10% ether	4•4	_
2	Light petroleum $+$ 20% ether	1.5	XXIII
3	Light petroleum $+$ 30% ether	0.9	
4	Light petroleum $+$ 35% ether	2-3	I, II
5	Light petroleum $+$ 40% ether	3.0	XI
6	Light petroleum $+$ 50% ether	2-7	_
7	Ether	4.3	-
8	Ether	45-5	IV
9	Ether $+ 5\%$ methanol	18.5	_

TABLE VIII

Chromatography of chloroform extract from the underground parts of L. trilobum

100), 244 (M-60-100-102), 85 (C₄H₉CO⁺), 83 (C₄H₇CO⁺), 57 (C₄H₉⁺), 55 (C₄H₇⁺). For C₂₇H₃₈O₉ (506.6) calculated: 64.02% C, 7.56% H, 0.20% H act.; found: 63.99% C, 7.55% H, 0.22% H act.

Compound V from lactone IX: A solution of lactone IX (130 mg) in acetic anhydride (10 ml) was heated in a sealed ampoule to 100°C for 24 h. The mixture was diluted with water, extracted several times with ether and the combined ethereal extracts were worked up as usual. The crude product (96 mg) was purified by thin-layer chromatography affording the enolide V (14 mg). Its identity with a standard was proved by comparison of IR, CD and ¹H NMR spectra.

Isolasolide (X)

Repeated chromatography of fraction 7 (Table VII) on a silica gel column gave isolasolide (X; 130 mg), m.p. $120-121^{\circ}$ C (light petroleum-ethyl acetate). IR spectrum (cm⁻¹): 3 615, 3 525 (hydroxyl), 1 780 (γ -lactone), 1 712 (α , β -unsaturated ester), 1 644 (double bond). Mass spectrum (m/z): 348 (M), 248 (M-100), 230 (M-100-18), 83 (C₄H₇CO⁺), 55 (C₄H₇⁺). For C₂₀H₂₈O₅ (348.4) calculated: 68.95% C, 8.10% H, 0.29% H act.; found: 68.82% C, 8.08% H, 0.27% H act.

Lasolide (III)

Repeated column chromatography of fraction 8 (Table VII) on silica gel afforded lasolide (*III*; 204 mg), m.p. $166-169^{\circ}C$ (light petroleum-ethyl acetate). Its identity with an authentic sample of lasolide¹ was proved by comparison of mass, IR and ¹H NMR spectra and by mixture melting point.

1-(3,4-Methylenedioxy-5-hydroxyphenyl)propan-1-one (XI)

Dry ground roots of *L. trilobum* (8.9 kg) were extracted with light petroleum and then with chloroform. The chloroform extract (142 g) was chromatographed on silica gel (Table VIII). Fraction 5 on crystallization yielded 85 mg of XI, m.p. $159-162^{\circ}C$ (ethyl acetate), composition $C_{10}H_{10}O_4$. According to the mass, IR and ¹H NMR spectra and mixture melting point, the compound was identical with an authentic sample¹⁰.

Elemental analyses were carried out in the Analytical Laboratory of our Institute by Dr V. Pechanec and Mrs A. Froňková under the direction of Dr J. Horáček. Infrared and CD spectra were taken and interpreted by Dr S. Vašičková, mass spectra by Dr L. Dolejš. Optical rotations were measured by Mrs Z. Ledvinová. We thank them all.

REFERENCES

- 1. Holub M., De Groote R., Herout V., Šorm F.: This Journal 33, 2911 (1968).
- 2. Holub M., Buděšínský M., Smítalová Z., Šaman D., Rychlewska U.: Tetrahedron Lett. 1984, 3755.
- 3. Holub M., Buděšínský M., Smítalová Z., Šaman D., Rychlewska U.: This Journal 50, 1878 (1985).
- Holub M., Buděšínský M., Smitalová Z., Šaman D., Rychlewska U.: This Journal 51, 903 (1986).
- 5. Holub M., Buděšínský M., Smítalová Z., Rychlewska U.: This Journal, in press.
- 6. Kutschabsky L., Reck G., Pfeiffer D., Ripperger H.: Z. Chem. 1984, 24.
- 7. Christensen S. B., Norup E.: Tetrahedron Lett. 1985, 107.
- 8. Holub M., Samek Z.: This Journal 38, 731 (1973).

- 9. Holub M., Samek Z., Vašíčková S., Masojídková M.: This Journal 43, 2444 (1978).
- Smítalová Z., Buděšínský M., Šaman D., Vašičková S., Holub M.: This Journal 49, 852 (1984).
- 11. Pinar M., Rico M., Rodríguez B.: Phytochemistry 21, 735 (1982).
- 12. Pinar M., Rico M., Rodríguez B.: Phytochemistry 21, 1802 (1982).
- 13. Pinar M., Rodríguez B., Rico M., Perales A., Fayos J.: Phytochemistry 22, 987 (1983).
- 14. Fayos J., Perales A., Pinar M., Rico M., Rodríguez B.: Phytochemistry 22, 1983 (1983).
- 15. Holub M., Motl O., Samek Z., Herout V.: This Journal 37, 1186 (1972).

Translated by M. Tichý.